annotate src/fftw-3.3.3/genfft/trig.ml @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 (*
Chris@10 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
Chris@10 3 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 4 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 5 *
Chris@10 6 * This program is free software; you can redistribute it and/or modify
Chris@10 7 * it under the terms of the GNU General Public License as published by
Chris@10 8 * the Free Software Foundation; either version 2 of the License, or
Chris@10 9 * (at your option) any later version.
Chris@10 10 *
Chris@10 11 * This program is distributed in the hope that it will be useful,
Chris@10 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 14 * GNU General Public License for more details.
Chris@10 15 *
Chris@10 16 * You should have received a copy of the GNU General Public License
Chris@10 17 * along with this program; if not, write to the Free Software
Chris@10 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 19 *
Chris@10 20 *)
Chris@10 21
Chris@10 22 (* trigonometric transforms *)
Chris@10 23 open Util
Chris@10 24
Chris@10 25 (* DFT of real input *)
Chris@10 26 let rdft sign n input =
Chris@10 27 Fft.dft sign n (Complex.real @@ input)
Chris@10 28
Chris@10 29 (* DFT of hermitian input *)
Chris@10 30 let hdft sign n input =
Chris@10 31 Fft.dft sign n (Complex.hermitian n input)
Chris@10 32
Chris@10 33 (* DFT real transform of vectors of two real numbers,
Chris@10 34 multiplication by (NaN I), and summation *)
Chris@10 35 let dft_via_rdft sign n input =
Chris@10 36 let f = rdft sign n input
Chris@10 37 in fun i ->
Chris@10 38 Complex.plus
Chris@10 39 [Complex.real (f i);
Chris@10 40 Complex.times (Complex.nan Expr.I) (Complex.imag (f i))]
Chris@10 41
Chris@10 42 (* Discrete Hartley Transform *)
Chris@10 43 let dht sign n input =
Chris@10 44 let f = Fft.dft sign n (Complex.real @@ input) in
Chris@10 45 (fun i ->
Chris@10 46 Complex.plus [Complex.real (f i); Complex.imag (f i)])
Chris@10 47
Chris@10 48 let trigI n input =
Chris@10 49 let twon = 2 * n in
Chris@10 50 let input' = Complex.hermitian twon input
Chris@10 51 in
Chris@10 52 Fft.dft 1 twon input'
Chris@10 53
Chris@10 54 let interleave_zero input = fun i ->
Chris@10 55 if (i mod 2) == 0
Chris@10 56 then Complex.zero
Chris@10 57 else
Chris@10 58 input ((i - 1) / 2)
Chris@10 59
Chris@10 60 let trigII n input =
Chris@10 61 let fourn = 4 * n in
Chris@10 62 let input' = Complex.hermitian fourn (interleave_zero input)
Chris@10 63 in
Chris@10 64 Fft.dft 1 fourn input'
Chris@10 65
Chris@10 66 let trigIII n input =
Chris@10 67 let fourn = 4 * n in
Chris@10 68 let twon = 2 * n in
Chris@10 69 let input' = Complex.hermitian fourn
Chris@10 70 (fun i ->
Chris@10 71 if (i == 0) then
Chris@10 72 Complex.real (input 0)
Chris@10 73 else if (i == twon) then
Chris@10 74 Complex.uminus (Complex.real (input 0))
Chris@10 75 else
Chris@10 76 Complex.antihermitian twon input i)
Chris@10 77 in
Chris@10 78 let dft = Fft.dft 1 fourn input'
Chris@10 79 in fun k -> dft (2 * k + 1)
Chris@10 80
Chris@10 81 let zero_extend n input = fun i ->
Chris@10 82 if (i >= 0 && i < n)
Chris@10 83 then input i
Chris@10 84 else Complex.zero
Chris@10 85
Chris@10 86 let trigIV n input =
Chris@10 87 let fourn = 4 * n
Chris@10 88 and eightn = 8 * n in
Chris@10 89 let input' = Complex.hermitian eightn
Chris@10 90 (zero_extend fourn (Complex.antihermitian fourn
Chris@10 91 (interleave_zero input)))
Chris@10 92 in
Chris@10 93 let dft = Fft.dft 1 eightn input'
Chris@10 94 in fun k -> dft (2 * k + 1)
Chris@10 95
Chris@10 96 let make_dct scale nshift trig =
Chris@10 97 fun n input ->
Chris@10 98 trig (n - nshift) (Complex.real @@ (Complex.times scale) @@
Chris@10 99 (zero_extend n input))
Chris@10 100 (*
Chris@10 101 * DCT-I: y[k] = sum x[j] cos(pi * j * k / n)
Chris@10 102 *)
Chris@10 103 let dctI = make_dct Complex.one 1 trigI
Chris@10 104
Chris@10 105 (*
Chris@10 106 * DCT-II: y[k] = sum x[j] cos(pi * (j + 1/2) * k / n)
Chris@10 107 *)
Chris@10 108 let dctII = make_dct Complex.one 0 trigII
Chris@10 109
Chris@10 110 (*
Chris@10 111 * DCT-III: y[k] = sum x[j] cos(pi * j * (k + 1/2) / n)
Chris@10 112 *)
Chris@10 113 let dctIII = make_dct Complex.half 0 trigIII
Chris@10 114
Chris@10 115 (*
Chris@10 116 * DCT-IV y[k] = sum x[j] cos(pi * (j + 1/2) * (k + 1/2) / n)
Chris@10 117 *)
Chris@10 118 let dctIV = make_dct Complex.half 0 trigIV
Chris@10 119
Chris@10 120 let shift s input = fun i -> input (i - s)
Chris@10 121
Chris@10 122 (* DST-x input := TRIG-x (input / i) *)
Chris@10 123 let make_dst scale nshift kshift jshift trig =
Chris@10 124 fun n input ->
Chris@10 125 Complex.real @@
Chris@10 126 (shift (- jshift)
Chris@10 127 (trig (n + nshift) (Complex.uminus @@
Chris@10 128 (Complex.times Complex.i) @@
Chris@10 129 (Complex.times scale) @@
Chris@10 130 Complex.real @@
Chris@10 131 (shift kshift (zero_extend n input)))))
Chris@10 132
Chris@10 133 (*
Chris@10 134 * DST-I: y[k] = sum x[j] sin(pi * j * k / n)
Chris@10 135 *)
Chris@10 136 let dstI = make_dst Complex.one 1 1 1 trigI
Chris@10 137
Chris@10 138 (*
Chris@10 139 * DST-II: y[k] = sum x[j] sin(pi * (j + 1/2) * k / n)
Chris@10 140 *)
Chris@10 141 let dstII = make_dst Complex.one 0 0 1 trigII
Chris@10 142
Chris@10 143 (*
Chris@10 144 * DST-III: y[k] = sum x[j] sin(pi * j * (k + 1/2) / n)
Chris@10 145 *)
Chris@10 146 let dstIII = make_dst Complex.half 0 1 0 trigIII
Chris@10 147
Chris@10 148 (*
Chris@10 149 * DST-IV y[k] = sum x[j] sin(pi * (j + 1/2) * (k + 1/2) / n)
Chris@10 150 *)
Chris@10 151 let dstIV = make_dst Complex.half 0 0 0 trigIV
Chris@10 152