annotate src/fftw-3.3.3/genfft/to_alist.ml @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 (*
Chris@10 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
Chris@10 3 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 4 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 5 *
Chris@10 6 * This program is free software; you can redistribute it and/or modify
Chris@10 7 * it under the terms of the GNU General Public License as published by
Chris@10 8 * the Free Software Foundation; either version 2 of the License, or
Chris@10 9 * (at your option) any later version.
Chris@10 10 *
Chris@10 11 * This program is distributed in the hope that it will be useful,
Chris@10 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 14 * GNU General Public License for more details.
Chris@10 15 *
Chris@10 16 * You should have received a copy of the GNU General Public License
Chris@10 17 * along with this program; if not, write to the Free Software
Chris@10 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 19 *
Chris@10 20 *)
Chris@10 21
Chris@10 22 (*************************************************************
Chris@10 23 * Conversion of the dag to an assignment list
Chris@10 24 *************************************************************)
Chris@10 25 (*
Chris@10 26 * This function is messy. The main problem is that we want to
Chris@10 27 * inline dag nodes conditionally, depending on how many times they
Chris@10 28 * are used. The Right Thing to do would be to modify the
Chris@10 29 * state monad to propagate some of the state backwards, so that
Chris@10 30 * we know whether a given node will be used again in the future.
Chris@10 31 * This modification is trivial in a lazy language, but it is
Chris@10 32 * messy in a strict language like ML.
Chris@10 33 *
Chris@10 34 * In this implementation, we just do the obvious thing, i.e., visit
Chris@10 35 * the dag twice, the first to count the node usages, and the second to
Chris@10 36 * produce the output.
Chris@10 37 *)
Chris@10 38
Chris@10 39 open Monads.StateMonad
Chris@10 40 open Monads.MemoMonad
Chris@10 41 open Expr
Chris@10 42
Chris@10 43 let fresh = Variable.make_temporary
Chris@10 44 let node_insert x = Assoctable.insert Expr.hash x
Chris@10 45 let node_lookup x = Assoctable.lookup Expr.hash (==) x
Chris@10 46 let empty = Assoctable.empty
Chris@10 47
Chris@10 48 let fetchAl =
Chris@10 49 fetchState >>= (fun (al, _, _) -> returnM al)
Chris@10 50
Chris@10 51 let storeAl al =
Chris@10 52 fetchState >>= (fun (_, visited, visited') ->
Chris@10 53 storeState (al, visited, visited'))
Chris@10 54
Chris@10 55 let fetchVisited = fetchState >>= (fun (_, v, _) -> returnM v)
Chris@10 56
Chris@10 57 let storeVisited visited =
Chris@10 58 fetchState >>= (fun (al, _, visited') ->
Chris@10 59 storeState (al, visited, visited'))
Chris@10 60
Chris@10 61 let fetchVisited' = fetchState >>= (fun (_, _, v') -> returnM v')
Chris@10 62 let storeVisited' visited' =
Chris@10 63 fetchState >>= (fun (al, visited, _) ->
Chris@10 64 storeState (al, visited, visited'))
Chris@10 65 let lookupVisitedM' key =
Chris@10 66 fetchVisited' >>= fun table ->
Chris@10 67 returnM (node_lookup key table)
Chris@10 68 let insertVisitedM' key value =
Chris@10 69 fetchVisited' >>= fun table ->
Chris@10 70 storeVisited' (node_insert key value table)
Chris@10 71
Chris@10 72 let counting f x =
Chris@10 73 fetchVisited >>= (fun v ->
Chris@10 74 match node_lookup x v with
Chris@10 75 Some count ->
Chris@10 76 let incr_cnt =
Chris@10 77 fetchVisited >>= (fun v' ->
Chris@10 78 storeVisited (node_insert x (count + 1) v'))
Chris@10 79 in
Chris@10 80 begin
Chris@10 81 match x with
Chris@10 82 (* Uminus is always inlined. Visit child *)
Chris@10 83 Uminus y -> f y >> incr_cnt
Chris@10 84 | _ -> incr_cnt
Chris@10 85 end
Chris@10 86 | None ->
Chris@10 87 f x >> fetchVisited >>= (fun v' ->
Chris@10 88 storeVisited (node_insert x 1 v')))
Chris@10 89
Chris@10 90 let with_varM v x =
Chris@10 91 fetchAl >>= (fun al -> storeAl ((v, x) :: al)) >> returnM (Load v)
Chris@10 92
Chris@10 93 let inlineM = returnM
Chris@10 94
Chris@10 95 let with_tempM x = match x with
Chris@10 96 | Load v when Variable.is_temporary v -> inlineM x (* avoid trivial moves *)
Chris@10 97 | _ -> with_varM (fresh ()) x
Chris@10 98
Chris@10 99 (* declare a temporary only if node is used more than once *)
Chris@10 100 let with_temp_maybeM node x =
Chris@10 101 fetchVisited >>= (fun v ->
Chris@10 102 match node_lookup node v with
Chris@10 103 Some count ->
Chris@10 104 if (count = 1 && !Magic.inline_single) then
Chris@10 105 inlineM x
Chris@10 106 else
Chris@10 107 with_tempM x
Chris@10 108 | None ->
Chris@10 109 failwith "with_temp_maybeM")
Chris@10 110 type fma =
Chris@10 111 NO_FMA
Chris@10 112 | FMA of expr * expr * expr (* FMA (a, b, c) => a + b * c *)
Chris@10 113 | FMS of expr * expr * expr (* FMS (a, b, c) => -a + b * c *)
Chris@10 114 | FNMS of expr * expr * expr (* FNMS (a, b, c) => a - b * c *)
Chris@10 115
Chris@10 116 let good_for_fma (a, b) =
Chris@10 117 let good = function
Chris@10 118 | NaN I -> true
Chris@10 119 | NaN CONJ -> true
Chris@10 120 | NaN _ -> false
Chris@10 121 | Times(NaN _, _) -> false
Chris@10 122 | Times(_, NaN _) -> false
Chris@10 123 | _ -> true
Chris@10 124 in good a && good b
Chris@10 125
Chris@10 126 let build_fma l =
Chris@10 127 if (not !Magic.enable_fma) then NO_FMA
Chris@10 128 else match l with
Chris@10 129 | [a; Uminus (Times (b, c))] when good_for_fma (b, c) -> FNMS (a, b, c)
Chris@10 130 | [Uminus (Times (b, c)); a] when good_for_fma (b, c) -> FNMS (a, b, c)
Chris@10 131 | [Uminus a; Times (b, c)] when good_for_fma (b, c) -> FMS (a, b, c)
Chris@10 132 | [Times (b, c); Uminus a] when good_for_fma (b, c) -> FMS (a, b, c)
Chris@10 133 | [a; Times (b, c)] when good_for_fma (b, c) -> FMA (a, b, c)
Chris@10 134 | [Times (b, c); a] when good_for_fma (b, c) -> FMA (a, b, c)
Chris@10 135 | _ -> NO_FMA
Chris@10 136
Chris@10 137 let children_fma l = match build_fma l with
Chris@10 138 | FMA (a, b, c) -> Some (a, b, c)
Chris@10 139 | FMS (a, b, c) -> Some (a, b, c)
Chris@10 140 | FNMS (a, b, c) -> Some (a, b, c)
Chris@10 141 | NO_FMA -> None
Chris@10 142
Chris@10 143
Chris@10 144 let rec visitM x =
Chris@10 145 counting (function
Chris@10 146 | Load v -> returnM ()
Chris@10 147 | Num a -> returnM ()
Chris@10 148 | NaN a -> returnM ()
Chris@10 149 | Store (v, x) -> visitM x
Chris@10 150 | Plus a -> (match children_fma a with
Chris@10 151 None -> mapM visitM a >> returnM ()
Chris@10 152 | Some (a, b, c) ->
Chris@10 153 (* visit fma's arguments twice to make sure they are not inlined *)
Chris@10 154 visitM a >> visitM a >>
Chris@10 155 visitM b >> visitM b >>
Chris@10 156 visitM c >> visitM c)
Chris@10 157 | Times (a, b) -> visitM a >> visitM b
Chris@10 158 | CTimes (a, b) -> visitM a >> visitM b
Chris@10 159 | CTimesJ (a, b) -> visitM a >> visitM b
Chris@10 160 | Uminus a -> visitM a)
Chris@10 161 x
Chris@10 162
Chris@10 163 let visit_rootsM = mapM visitM
Chris@10 164
Chris@10 165
Chris@10 166 let rec expr_of_nodeM x =
Chris@10 167 memoizing lookupVisitedM' insertVisitedM'
Chris@10 168 (function x -> match x with
Chris@10 169 | Load v ->
Chris@10 170 if (Variable.is_temporary v) then
Chris@10 171 inlineM (Load v)
Chris@10 172 else if (Variable.is_locative v && !Magic.inline_loads) then
Chris@10 173 inlineM (Load v)
Chris@10 174 else if (Variable.is_constant v && !Magic.inline_loads_constants) then
Chris@10 175 inlineM (Load v)
Chris@10 176 else
Chris@10 177 with_tempM (Load v)
Chris@10 178 | Num a ->
Chris@10 179 if !Magic.inline_constants then
Chris@10 180 inlineM (Num a)
Chris@10 181 else
Chris@10 182 with_temp_maybeM x (Num a)
Chris@10 183 | NaN a -> inlineM (NaN a)
Chris@10 184 | Store (v, x) ->
Chris@10 185 expr_of_nodeM x >>=
Chris@10 186 (if !Magic.trivial_stores then with_tempM else inlineM) >>=
Chris@10 187 with_varM v
Chris@10 188
Chris@10 189 | Plus a ->
Chris@10 190 begin
Chris@10 191 match build_fma a with
Chris@10 192 FMA (a, b, c) ->
Chris@10 193 expr_of_nodeM a >>= fun a' ->
Chris@10 194 expr_of_nodeM b >>= fun b' ->
Chris@10 195 expr_of_nodeM c >>= fun c' ->
Chris@10 196 with_temp_maybeM x (Plus [a'; Times (b', c')])
Chris@10 197 | FMS (a, b, c) ->
Chris@10 198 expr_of_nodeM a >>= fun a' ->
Chris@10 199 expr_of_nodeM b >>= fun b' ->
Chris@10 200 expr_of_nodeM c >>= fun c' ->
Chris@10 201 with_temp_maybeM x
Chris@10 202 (Plus [Times (b', c'); Uminus a'])
Chris@10 203 | FNMS (a, b, c) ->
Chris@10 204 expr_of_nodeM a >>= fun a' ->
Chris@10 205 expr_of_nodeM b >>= fun b' ->
Chris@10 206 expr_of_nodeM c >>= fun c' ->
Chris@10 207 with_temp_maybeM x
Chris@10 208 (Plus [a'; Uminus (Times (b', c'))])
Chris@10 209 | NO_FMA ->
Chris@10 210 mapM expr_of_nodeM a >>= fun a' ->
Chris@10 211 with_temp_maybeM x (Plus a')
Chris@10 212 end
Chris@10 213 | CTimes (Load _ as a, b) when !Magic.generate_bytw ->
Chris@10 214 expr_of_nodeM b >>= fun b' ->
Chris@10 215 with_tempM (CTimes (a, b'))
Chris@10 216 | CTimes (a, b) ->
Chris@10 217 expr_of_nodeM a >>= fun a' ->
Chris@10 218 expr_of_nodeM b >>= fun b' ->
Chris@10 219 with_tempM (CTimes (a', b'))
Chris@10 220 | CTimesJ (Load _ as a, b) when !Magic.generate_bytw ->
Chris@10 221 expr_of_nodeM b >>= fun b' ->
Chris@10 222 with_tempM (CTimesJ (a, b'))
Chris@10 223 | CTimesJ (a, b) ->
Chris@10 224 expr_of_nodeM a >>= fun a' ->
Chris@10 225 expr_of_nodeM b >>= fun b' ->
Chris@10 226 with_tempM (CTimesJ (a', b'))
Chris@10 227 | Times (a, b) ->
Chris@10 228 expr_of_nodeM a >>= fun a' ->
Chris@10 229 expr_of_nodeM b >>= fun b' ->
Chris@10 230 begin
Chris@10 231 match a' with
Chris@10 232 Num a'' when !Magic.strength_reduce_mul && Number.is_two a'' ->
Chris@10 233 (inlineM b' >>= fun b'' ->
Chris@10 234 with_temp_maybeM x (Plus [b''; b'']))
Chris@10 235 | _ -> with_temp_maybeM x (Times (a', b'))
Chris@10 236 end
Chris@10 237 | Uminus a ->
Chris@10 238 expr_of_nodeM a >>= fun a' ->
Chris@10 239 inlineM (Uminus a'))
Chris@10 240 x
Chris@10 241
Chris@10 242 let expr_of_rootsM = mapM expr_of_nodeM
Chris@10 243
Chris@10 244 let peek_alistM roots =
Chris@10 245 visit_rootsM roots >> expr_of_rootsM roots >> fetchAl
Chris@10 246
Chris@10 247 let wrap_assign (a, b) = Expr.Assign (a, b)
Chris@10 248
Chris@10 249 let to_assignments dag =
Chris@10 250 let () = Util.info "begin to_alist" in
Chris@10 251 let al = List.rev (runM ([], empty, empty) peek_alistM dag) in
Chris@10 252 let res = List.map wrap_assign al in
Chris@10 253 let () = Util.info "end to_alist" in
Chris@10 254 res
Chris@10 255
Chris@10 256
Chris@10 257 (* dump alist in `dot' format *)
Chris@10 258 let dump print alist =
Chris@10 259 let vs v = "\"" ^ (Variable.unparse v) ^ "\"" in
Chris@10 260 begin
Chris@10 261 print "digraph G {\n";
Chris@10 262 print "\tsize=\"6,6\";\n";
Chris@10 263
Chris@10 264 (* all input nodes have the same rank *)
Chris@10 265 print "{ rank = same;\n";
Chris@10 266 List.iter (fun (Expr.Assign (v, x)) ->
Chris@10 267 List.iter (fun y ->
Chris@10 268 if (Variable.is_locative y) then print("\t" ^ (vs y) ^ ";\n"))
Chris@10 269 (Expr.find_vars x))
Chris@10 270 alist;
Chris@10 271 print "}\n";
Chris@10 272
Chris@10 273 (* all output nodes have the same rank *)
Chris@10 274 print "{ rank = same;\n";
Chris@10 275 List.iter (fun (Expr.Assign (v, x)) ->
Chris@10 276 if (Variable.is_locative v) then print("\t" ^ (vs v) ^ ";\n"))
Chris@10 277 alist;
Chris@10 278 print "}\n";
Chris@10 279
Chris@10 280 (* edges *)
Chris@10 281 List.iter (fun (Expr.Assign (v, x)) ->
Chris@10 282 List.iter (fun y -> print("\t" ^ (vs y) ^ " -> " ^ (vs v) ^ ";\n"))
Chris@10 283 (Expr.find_vars x))
Chris@10 284 alist;
Chris@10 285
Chris@10 286 print "}\n";
Chris@10 287 end
Chris@10 288