annotate src/fftw-3.3.3/genfft/schedule.ml @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 (*
Chris@10 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
Chris@10 3 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 4 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 5 *
Chris@10 6 * This program is free software; you can redistribute it and/or modify
Chris@10 7 * it under the terms of the GNU General Public License as published by
Chris@10 8 * the Free Software Foundation; either version 2 of the License, or
Chris@10 9 * (at your option) any later version.
Chris@10 10 *
Chris@10 11 * This program is distributed in the hope that it will be useful,
Chris@10 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 14 * GNU General Public License for more details.
Chris@10 15 *
Chris@10 16 * You should have received a copy of the GNU General Public License
Chris@10 17 * along with this program; if not, write to the Free Software
Chris@10 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 19 *
Chris@10 20 *)
Chris@10 21
Chris@10 22 (* This file contains the instruction scheduler, which finds an
Chris@10 23 efficient ordering for a given list of instructions.
Chris@10 24
Chris@10 25 The scheduler analyzes the DAG (directed acyclic graph) formed by
Chris@10 26 the instruction dependencies, and recursively partitions it. The
Chris@10 27 resulting schedule data structure expresses a "good" ordering
Chris@10 28 and structure for the computation.
Chris@10 29
Chris@10 30 The scheduler makes use of utilties in Dag and other packages to
Chris@10 31 manipulate the Dag and the instruction list. *)
Chris@10 32
Chris@10 33 open Dag
Chris@10 34 (*************************************************
Chris@10 35 * Dag scheduler
Chris@10 36 *************************************************)
Chris@10 37 let to_assignment node = (Expr.Assign (node.assigned, node.expression))
Chris@10 38 let makedag l = Dag.makedag
Chris@10 39 (List.map (function Expr.Assign (v, x) -> (v, x)) l)
Chris@10 40
Chris@10 41 let return x = x
Chris@10 42 let has_color c n = (n.color = c)
Chris@10 43 let set_color c n = (n.color <- c)
Chris@10 44 let has_either_color c1 c2 n = (n.color = c1 || n.color = c2)
Chris@10 45
Chris@10 46 let infinity = 100000
Chris@10 47
Chris@10 48 let cc dag inputs =
Chris@10 49 begin
Chris@10 50 Dag.for_all dag (fun node ->
Chris@10 51 node.label <- infinity);
Chris@10 52
Chris@10 53 (match inputs with
Chris@10 54 a :: _ -> bfs dag a 0
Chris@10 55 | _ -> failwith "connected");
Chris@10 56
Chris@10 57 return
Chris@10 58 ((List.map to_assignment (List.filter (fun n -> n.label < infinity)
Chris@10 59 (Dag.to_list dag))),
Chris@10 60 (List.map to_assignment (List.filter (fun n -> n.label == infinity)
Chris@10 61 (Dag.to_list dag))))
Chris@10 62 end
Chris@10 63
Chris@10 64 let rec connected_components alist =
Chris@10 65 let dag = makedag alist in
Chris@10 66 let inputs =
Chris@10 67 List.filter (fun node -> Util.null node.predecessors)
Chris@10 68 (Dag.to_list dag) in
Chris@10 69 match cc dag inputs with
Chris@10 70 (a, []) -> [a]
Chris@10 71 | (a, b) -> a :: connected_components b
Chris@10 72
Chris@10 73 let single_load node =
Chris@10 74 match (node.input_variables, node.predecessors) with
Chris@10 75 ([x], []) ->
Chris@10 76 Variable.is_constant x ||
Chris@10 77 (!Magic.locations_are_special && Variable.is_locative x)
Chris@10 78 | _ -> false
Chris@10 79
Chris@10 80 let loads_locative node =
Chris@10 81 match (node.input_variables, node.predecessors) with
Chris@10 82 | ([x], []) -> Variable.is_locative x
Chris@10 83 | _ -> false
Chris@10 84
Chris@10 85 let partition alist =
Chris@10 86 let dag = makedag alist in
Chris@10 87 let dag' = Dag.to_list dag in
Chris@10 88 let inputs =
Chris@10 89 List.filter (fun node -> Util.null node.predecessors) dag'
Chris@10 90 and outputs =
Chris@10 91 List.filter (fun node -> Util.null node.successors) dag'
Chris@10 92 and special_inputs = List.filter single_load dag' in
Chris@10 93 begin
Chris@10 94
Chris@10 95 let c = match !Magic.schedule_type with
Chris@10 96 | 1 -> RED; (* all nodes in the input partition *)
Chris@10 97 | -1 -> BLUE; (* all nodes in the output partition *)
Chris@10 98 | _ -> BLACK; (* node color determined by bisection algorithm *)
Chris@10 99 in Dag.for_all dag (fun node -> node.color <- c);
Chris@10 100
Chris@10 101 Util.for_list inputs (set_color RED);
Chris@10 102
Chris@10 103 (*
Chris@10 104 The special inputs are those input nodes that load a single
Chris@10 105 location or twiddle factor. Special inputs can end up either
Chris@10 106 in the blue or in the red part. These inputs are special
Chris@10 107 because they inherit a color from their neighbors: If a red
Chris@10 108 node needs a special input, the special input becomes red, but
Chris@10 109 if all successors of a special input are blue, the special
Chris@10 110 input becomes blue. Outputs are always blue, whether they be
Chris@10 111 special or not.
Chris@10 112
Chris@10 113 Because of the processing of special inputs, however, the final
Chris@10 114 partition might end up being composed only of blue nodes (which
Chris@10 115 is incorrect). In this case we manually reset all inputs
Chris@10 116 (whether special or not) to be red.
Chris@10 117 *)
Chris@10 118
Chris@10 119 Util.for_list special_inputs (set_color YELLOW);
Chris@10 120
Chris@10 121 Util.for_list outputs (set_color BLUE);
Chris@10 122
Chris@10 123 let rec loopi donep =
Chris@10 124 match (List.filter
Chris@10 125 (fun node -> (has_color BLACK node) &&
Chris@10 126 List.for_all (has_either_color RED YELLOW) node.predecessors)
Chris@10 127 dag') with
Chris@10 128 [] -> if (donep) then () else loopo true
Chris@10 129 | i ->
Chris@10 130 begin
Chris@10 131 Util.for_list i (fun node ->
Chris@10 132 begin
Chris@10 133 set_color RED node;
Chris@10 134 Util.for_list node.predecessors (set_color RED);
Chris@10 135 end);
Chris@10 136 loopo false;
Chris@10 137 end
Chris@10 138
Chris@10 139 and loopo donep =
Chris@10 140 match (List.filter
Chris@10 141 (fun node -> (has_either_color BLACK YELLOW node) &&
Chris@10 142 List.for_all (has_color BLUE) node.successors)
Chris@10 143 dag') with
Chris@10 144 [] -> if (donep) then () else loopi true
Chris@10 145 | o ->
Chris@10 146 begin
Chris@10 147 Util.for_list o (set_color BLUE);
Chris@10 148 loopi false;
Chris@10 149 end
Chris@10 150
Chris@10 151 in loopi false;
Chris@10 152
Chris@10 153 (* fix the partition if it is incorrect *)
Chris@10 154 if not (List.exists (has_color RED) dag') then
Chris@10 155 Util.for_list inputs (set_color RED);
Chris@10 156
Chris@10 157 return
Chris@10 158 ((List.map to_assignment (List.filter (has_color RED) dag')),
Chris@10 159 (List.map to_assignment (List.filter (has_color BLUE) dag')))
Chris@10 160 end
Chris@10 161
Chris@10 162 type schedule =
Chris@10 163 Done
Chris@10 164 | Instr of Expr.assignment
Chris@10 165 | Seq of (schedule * schedule)
Chris@10 166 | Par of schedule list
Chris@10 167
Chris@10 168
Chris@10 169
Chris@10 170 (* produce a sequential schedule determined by the user *)
Chris@10 171 let rec sequentially = function
Chris@10 172 [] -> Done
Chris@10 173 | a :: b -> Seq (Instr a, sequentially b)
Chris@10 174
Chris@10 175 let schedule =
Chris@10 176 let rec schedule_alist = function
Chris@10 177 | [] -> Done
Chris@10 178 | [a] -> Instr a
Chris@10 179 | alist -> match connected_components alist with
Chris@10 180 | ([a]) -> schedule_connected a
Chris@10 181 | l -> Par (List.map schedule_alist l)
Chris@10 182
Chris@10 183 and schedule_connected alist =
Chris@10 184 match partition alist with
Chris@10 185 | (a, b) -> Seq (schedule_alist a, schedule_alist b)
Chris@10 186
Chris@10 187 in fun x ->
Chris@10 188 let () = Util.info "begin schedule" in
Chris@10 189 let res = schedule_alist x in
Chris@10 190 let () = Util.info "end schedule" in
Chris@10 191 res
Chris@10 192
Chris@10 193
Chris@10 194 (* partition a dag into two parts:
Chris@10 195
Chris@10 196 1) the set of loads from locatives and their successors,
Chris@10 197 2) all other nodes
Chris@10 198
Chris@10 199 This step separates the ``body'' of the dag, which computes the
Chris@10 200 actual fft, from the ``precomputations'' part, which computes e.g.
Chris@10 201 twiddle factors.
Chris@10 202 *)
Chris@10 203 let partition_precomputations alist =
Chris@10 204 let dag = makedag alist in
Chris@10 205 let dag' = Dag.to_list dag in
Chris@10 206 let loads = List.filter loads_locative dag' in
Chris@10 207 begin
Chris@10 208
Chris@10 209 Dag.for_all dag (set_color BLUE);
Chris@10 210 Util.for_list loads (set_color RED);
Chris@10 211
Chris@10 212 let rec loop () =
Chris@10 213 match (List.filter
Chris@10 214 (fun node -> (has_color RED node) &&
Chris@10 215 List.exists (has_color BLUE) node.successors)
Chris@10 216 dag') with
Chris@10 217 [] -> ()
Chris@10 218 | i ->
Chris@10 219 begin
Chris@10 220 Util.for_list i
Chris@10 221 (fun node ->
Chris@10 222 Util.for_list node.successors (set_color RED));
Chris@10 223 loop ()
Chris@10 224 end
Chris@10 225
Chris@10 226 in loop ();
Chris@10 227
Chris@10 228 return
Chris@10 229 ((List.map to_assignment (List.filter (has_color BLUE) dag')),
Chris@10 230 (List.map to_assignment (List.filter (has_color RED) dag')))
Chris@10 231 end
Chris@10 232
Chris@10 233 let isolate_precomputations_and_schedule alist =
Chris@10 234 let (a, b) = partition_precomputations alist in
Chris@10 235 Seq (schedule a, schedule b)
Chris@10 236