Chris@10
|
1 (*
|
Chris@10
|
2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
4 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
5 *
|
Chris@10
|
6 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
7 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
8 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
9 * (at your option) any later version.
|
Chris@10
|
10 *
|
Chris@10
|
11 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
14 * GNU General Public License for more details.
|
Chris@10
|
15 *
|
Chris@10
|
16 * You should have received a copy of the GNU General Public License
|
Chris@10
|
17 * along with this program; if not, write to the Free Software
|
Chris@10
|
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
19 *
|
Chris@10
|
20 *)
|
Chris@10
|
21
|
Chris@10
|
22 (* This file contains the instruction scheduler, which finds an
|
Chris@10
|
23 efficient ordering for a given list of instructions.
|
Chris@10
|
24
|
Chris@10
|
25 The scheduler analyzes the DAG (directed acyclic graph) formed by
|
Chris@10
|
26 the instruction dependencies, and recursively partitions it. The
|
Chris@10
|
27 resulting schedule data structure expresses a "good" ordering
|
Chris@10
|
28 and structure for the computation.
|
Chris@10
|
29
|
Chris@10
|
30 The scheduler makes use of utilties in Dag and other packages to
|
Chris@10
|
31 manipulate the Dag and the instruction list. *)
|
Chris@10
|
32
|
Chris@10
|
33 open Dag
|
Chris@10
|
34 (*************************************************
|
Chris@10
|
35 * Dag scheduler
|
Chris@10
|
36 *************************************************)
|
Chris@10
|
37 let to_assignment node = (Expr.Assign (node.assigned, node.expression))
|
Chris@10
|
38 let makedag l = Dag.makedag
|
Chris@10
|
39 (List.map (function Expr.Assign (v, x) -> (v, x)) l)
|
Chris@10
|
40
|
Chris@10
|
41 let return x = x
|
Chris@10
|
42 let has_color c n = (n.color = c)
|
Chris@10
|
43 let set_color c n = (n.color <- c)
|
Chris@10
|
44 let has_either_color c1 c2 n = (n.color = c1 || n.color = c2)
|
Chris@10
|
45
|
Chris@10
|
46 let infinity = 100000
|
Chris@10
|
47
|
Chris@10
|
48 let cc dag inputs =
|
Chris@10
|
49 begin
|
Chris@10
|
50 Dag.for_all dag (fun node ->
|
Chris@10
|
51 node.label <- infinity);
|
Chris@10
|
52
|
Chris@10
|
53 (match inputs with
|
Chris@10
|
54 a :: _ -> bfs dag a 0
|
Chris@10
|
55 | _ -> failwith "connected");
|
Chris@10
|
56
|
Chris@10
|
57 return
|
Chris@10
|
58 ((List.map to_assignment (List.filter (fun n -> n.label < infinity)
|
Chris@10
|
59 (Dag.to_list dag))),
|
Chris@10
|
60 (List.map to_assignment (List.filter (fun n -> n.label == infinity)
|
Chris@10
|
61 (Dag.to_list dag))))
|
Chris@10
|
62 end
|
Chris@10
|
63
|
Chris@10
|
64 let rec connected_components alist =
|
Chris@10
|
65 let dag = makedag alist in
|
Chris@10
|
66 let inputs =
|
Chris@10
|
67 List.filter (fun node -> Util.null node.predecessors)
|
Chris@10
|
68 (Dag.to_list dag) in
|
Chris@10
|
69 match cc dag inputs with
|
Chris@10
|
70 (a, []) -> [a]
|
Chris@10
|
71 | (a, b) -> a :: connected_components b
|
Chris@10
|
72
|
Chris@10
|
73 let single_load node =
|
Chris@10
|
74 match (node.input_variables, node.predecessors) with
|
Chris@10
|
75 ([x], []) ->
|
Chris@10
|
76 Variable.is_constant x ||
|
Chris@10
|
77 (!Magic.locations_are_special && Variable.is_locative x)
|
Chris@10
|
78 | _ -> false
|
Chris@10
|
79
|
Chris@10
|
80 let loads_locative node =
|
Chris@10
|
81 match (node.input_variables, node.predecessors) with
|
Chris@10
|
82 | ([x], []) -> Variable.is_locative x
|
Chris@10
|
83 | _ -> false
|
Chris@10
|
84
|
Chris@10
|
85 let partition alist =
|
Chris@10
|
86 let dag = makedag alist in
|
Chris@10
|
87 let dag' = Dag.to_list dag in
|
Chris@10
|
88 let inputs =
|
Chris@10
|
89 List.filter (fun node -> Util.null node.predecessors) dag'
|
Chris@10
|
90 and outputs =
|
Chris@10
|
91 List.filter (fun node -> Util.null node.successors) dag'
|
Chris@10
|
92 and special_inputs = List.filter single_load dag' in
|
Chris@10
|
93 begin
|
Chris@10
|
94
|
Chris@10
|
95 let c = match !Magic.schedule_type with
|
Chris@10
|
96 | 1 -> RED; (* all nodes in the input partition *)
|
Chris@10
|
97 | -1 -> BLUE; (* all nodes in the output partition *)
|
Chris@10
|
98 | _ -> BLACK; (* node color determined by bisection algorithm *)
|
Chris@10
|
99 in Dag.for_all dag (fun node -> node.color <- c);
|
Chris@10
|
100
|
Chris@10
|
101 Util.for_list inputs (set_color RED);
|
Chris@10
|
102
|
Chris@10
|
103 (*
|
Chris@10
|
104 The special inputs are those input nodes that load a single
|
Chris@10
|
105 location or twiddle factor. Special inputs can end up either
|
Chris@10
|
106 in the blue or in the red part. These inputs are special
|
Chris@10
|
107 because they inherit a color from their neighbors: If a red
|
Chris@10
|
108 node needs a special input, the special input becomes red, but
|
Chris@10
|
109 if all successors of a special input are blue, the special
|
Chris@10
|
110 input becomes blue. Outputs are always blue, whether they be
|
Chris@10
|
111 special or not.
|
Chris@10
|
112
|
Chris@10
|
113 Because of the processing of special inputs, however, the final
|
Chris@10
|
114 partition might end up being composed only of blue nodes (which
|
Chris@10
|
115 is incorrect). In this case we manually reset all inputs
|
Chris@10
|
116 (whether special or not) to be red.
|
Chris@10
|
117 *)
|
Chris@10
|
118
|
Chris@10
|
119 Util.for_list special_inputs (set_color YELLOW);
|
Chris@10
|
120
|
Chris@10
|
121 Util.for_list outputs (set_color BLUE);
|
Chris@10
|
122
|
Chris@10
|
123 let rec loopi donep =
|
Chris@10
|
124 match (List.filter
|
Chris@10
|
125 (fun node -> (has_color BLACK node) &&
|
Chris@10
|
126 List.for_all (has_either_color RED YELLOW) node.predecessors)
|
Chris@10
|
127 dag') with
|
Chris@10
|
128 [] -> if (donep) then () else loopo true
|
Chris@10
|
129 | i ->
|
Chris@10
|
130 begin
|
Chris@10
|
131 Util.for_list i (fun node ->
|
Chris@10
|
132 begin
|
Chris@10
|
133 set_color RED node;
|
Chris@10
|
134 Util.for_list node.predecessors (set_color RED);
|
Chris@10
|
135 end);
|
Chris@10
|
136 loopo false;
|
Chris@10
|
137 end
|
Chris@10
|
138
|
Chris@10
|
139 and loopo donep =
|
Chris@10
|
140 match (List.filter
|
Chris@10
|
141 (fun node -> (has_either_color BLACK YELLOW node) &&
|
Chris@10
|
142 List.for_all (has_color BLUE) node.successors)
|
Chris@10
|
143 dag') with
|
Chris@10
|
144 [] -> if (donep) then () else loopi true
|
Chris@10
|
145 | o ->
|
Chris@10
|
146 begin
|
Chris@10
|
147 Util.for_list o (set_color BLUE);
|
Chris@10
|
148 loopi false;
|
Chris@10
|
149 end
|
Chris@10
|
150
|
Chris@10
|
151 in loopi false;
|
Chris@10
|
152
|
Chris@10
|
153 (* fix the partition if it is incorrect *)
|
Chris@10
|
154 if not (List.exists (has_color RED) dag') then
|
Chris@10
|
155 Util.for_list inputs (set_color RED);
|
Chris@10
|
156
|
Chris@10
|
157 return
|
Chris@10
|
158 ((List.map to_assignment (List.filter (has_color RED) dag')),
|
Chris@10
|
159 (List.map to_assignment (List.filter (has_color BLUE) dag')))
|
Chris@10
|
160 end
|
Chris@10
|
161
|
Chris@10
|
162 type schedule =
|
Chris@10
|
163 Done
|
Chris@10
|
164 | Instr of Expr.assignment
|
Chris@10
|
165 | Seq of (schedule * schedule)
|
Chris@10
|
166 | Par of schedule list
|
Chris@10
|
167
|
Chris@10
|
168
|
Chris@10
|
169
|
Chris@10
|
170 (* produce a sequential schedule determined by the user *)
|
Chris@10
|
171 let rec sequentially = function
|
Chris@10
|
172 [] -> Done
|
Chris@10
|
173 | a :: b -> Seq (Instr a, sequentially b)
|
Chris@10
|
174
|
Chris@10
|
175 let schedule =
|
Chris@10
|
176 let rec schedule_alist = function
|
Chris@10
|
177 | [] -> Done
|
Chris@10
|
178 | [a] -> Instr a
|
Chris@10
|
179 | alist -> match connected_components alist with
|
Chris@10
|
180 | ([a]) -> schedule_connected a
|
Chris@10
|
181 | l -> Par (List.map schedule_alist l)
|
Chris@10
|
182
|
Chris@10
|
183 and schedule_connected alist =
|
Chris@10
|
184 match partition alist with
|
Chris@10
|
185 | (a, b) -> Seq (schedule_alist a, schedule_alist b)
|
Chris@10
|
186
|
Chris@10
|
187 in fun x ->
|
Chris@10
|
188 let () = Util.info "begin schedule" in
|
Chris@10
|
189 let res = schedule_alist x in
|
Chris@10
|
190 let () = Util.info "end schedule" in
|
Chris@10
|
191 res
|
Chris@10
|
192
|
Chris@10
|
193
|
Chris@10
|
194 (* partition a dag into two parts:
|
Chris@10
|
195
|
Chris@10
|
196 1) the set of loads from locatives and their successors,
|
Chris@10
|
197 2) all other nodes
|
Chris@10
|
198
|
Chris@10
|
199 This step separates the ``body'' of the dag, which computes the
|
Chris@10
|
200 actual fft, from the ``precomputations'' part, which computes e.g.
|
Chris@10
|
201 twiddle factors.
|
Chris@10
|
202 *)
|
Chris@10
|
203 let partition_precomputations alist =
|
Chris@10
|
204 let dag = makedag alist in
|
Chris@10
|
205 let dag' = Dag.to_list dag in
|
Chris@10
|
206 let loads = List.filter loads_locative dag' in
|
Chris@10
|
207 begin
|
Chris@10
|
208
|
Chris@10
|
209 Dag.for_all dag (set_color BLUE);
|
Chris@10
|
210 Util.for_list loads (set_color RED);
|
Chris@10
|
211
|
Chris@10
|
212 let rec loop () =
|
Chris@10
|
213 match (List.filter
|
Chris@10
|
214 (fun node -> (has_color RED node) &&
|
Chris@10
|
215 List.exists (has_color BLUE) node.successors)
|
Chris@10
|
216 dag') with
|
Chris@10
|
217 [] -> ()
|
Chris@10
|
218 | i ->
|
Chris@10
|
219 begin
|
Chris@10
|
220 Util.for_list i
|
Chris@10
|
221 (fun node ->
|
Chris@10
|
222 Util.for_list node.successors (set_color RED));
|
Chris@10
|
223 loop ()
|
Chris@10
|
224 end
|
Chris@10
|
225
|
Chris@10
|
226 in loop ();
|
Chris@10
|
227
|
Chris@10
|
228 return
|
Chris@10
|
229 ((List.map to_assignment (List.filter (has_color BLUE) dag')),
|
Chris@10
|
230 (List.map to_assignment (List.filter (has_color RED) dag')))
|
Chris@10
|
231 end
|
Chris@10
|
232
|
Chris@10
|
233 let isolate_precomputations_and_schedule alist =
|
Chris@10
|
234 let (a, b) = partition_precomputations alist in
|
Chris@10
|
235 Seq (schedule a, schedule b)
|
Chris@10
|
236
|