annotate src/fftw-3.3.3/genfft/complex.ml @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 (*
Chris@10 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
Chris@10 3 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 4 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 5 *
Chris@10 6 * This program is free software; you can redistribute it and/or modify
Chris@10 7 * it under the terms of the GNU General Public License as published by
Chris@10 8 * the Free Software Foundation; either version 2 of the License, or
Chris@10 9 * (at your option) any later version.
Chris@10 10 *
Chris@10 11 * This program is distributed in the hope that it will be useful,
Chris@10 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 14 * GNU General Public License for more details.
Chris@10 15 *
Chris@10 16 * You should have received a copy of the GNU General Public License
Chris@10 17 * along with this program; if not, write to the Free Software
Chris@10 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 19 *
Chris@10 20 *)
Chris@10 21
Chris@10 22 (* abstraction layer for complex operations *)
Chris@10 23 open Littlesimp
Chris@10 24 open Expr
Chris@10 25
Chris@10 26 (* type of complex expressions *)
Chris@10 27 type expr = CE of Expr.expr * Expr.expr
Chris@10 28
Chris@10 29 let two = CE (makeNum Number.two, makeNum Number.zero)
Chris@10 30 let one = CE (makeNum Number.one, makeNum Number.zero)
Chris@10 31 let i = CE (makeNum Number.zero, makeNum Number.one)
Chris@10 32 let zero = CE (makeNum Number.zero, makeNum Number.zero)
Chris@10 33 let make (r, i) = CE (r, i)
Chris@10 34
Chris@10 35 let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b)
Chris@10 36
Chris@10 37 let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)),
Chris@10 38 makeNum Number.zero)
Chris@10 39
Chris@10 40 let inverse_int_sqrt n =
Chris@10 41 CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))),
Chris@10 42 makeNum Number.zero)
Chris@10 43 let int_sqrt n =
Chris@10 44 CE (makeNum (Number.sqrt (Number.of_int n)),
Chris@10 45 makeNum Number.zero)
Chris@10 46
Chris@10 47 let nan x = CE (NaN x, makeNum Number.zero)
Chris@10 48
Chris@10 49 let half = inverse_int 2
Chris@10 50
Chris@10 51 let times3x3 (CE (a, b)) (CE (c, d)) =
Chris@10 52 CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]);
Chris@10 53 makeTimes (b, makePlus [c; makeUminus (d)])],
Chris@10 54 makePlus [makeTimes (a, makePlus [c; d]);
Chris@10 55 makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))])
Chris@10 56
Chris@10 57 let times (CE (a, b)) (CE (c, d)) =
Chris@10 58 if not !Magic.threemult then
Chris@10 59 CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))],
Chris@10 60 makePlus [makeTimes (a, d); makeTimes (b, c)])
Chris@10 61 else if is_constant c && is_constant d then
Chris@10 62 times3x3 (CE (a, b)) (CE (c, d))
Chris@10 63 else (* hope a and b are constant expressions *)
Chris@10 64 times3x3 (CE (c, d)) (CE (a, b))
Chris@10 65
Chris@10 66 let ctimes (CE (a, _)) (CE (c, _)) =
Chris@10 67 CE (CTimes (a, c), makeNum Number.zero)
Chris@10 68
Chris@10 69 let ctimesj (CE (a, _)) (CE (c, _)) =
Chris@10 70 CE (CTimesJ (a, c), makeNum Number.zero)
Chris@10 71
Chris@10 72 (* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *)
Chris@10 73 let exp n i =
Chris@10 74 let (c, s) = Number.cexp n i
Chris@10 75 in CE (makeNum c, makeNum s)
Chris@10 76
Chris@10 77 (* various trig functions evaluated at (2*pi*i/n * m) *)
Chris@10 78 let sec n m =
Chris@10 79 let (c, s) = Number.cexp n m
Chris@10 80 in CE (makeNum (Number.div Number.one c), makeNum Number.zero)
Chris@10 81 let csc n m =
Chris@10 82 let (c, s) = Number.cexp n m
Chris@10 83 in CE (makeNum (Number.div Number.one s), makeNum Number.zero)
Chris@10 84 let tan n m =
Chris@10 85 let (c, s) = Number.cexp n m
Chris@10 86 in CE (makeNum (Number.div s c), makeNum Number.zero)
Chris@10 87 let cot n m =
Chris@10 88 let (c, s) = Number.cexp n m
Chris@10 89 in CE (makeNum (Number.div c s), makeNum Number.zero)
Chris@10 90
Chris@10 91 (* complex sum *)
Chris@10 92 let plus a =
Chris@10 93 let rec unzip_complex = function
Chris@10 94 [] -> ([], [])
Chris@10 95 | ((CE (a, b)) :: s) ->
Chris@10 96 let (r,i) = unzip_complex s
Chris@10 97 in
Chris@10 98 (a::r), (b::i) in
Chris@10 99 let (c, d) = unzip_complex a in
Chris@10 100 CE (makePlus c, makePlus d)
Chris@10 101
Chris@10 102 (* extract real/imaginary *)
Chris@10 103 let real (CE (a, b)) = CE (a, makeNum Number.zero)
Chris@10 104 let imag (CE (a, b)) = CE (b, makeNum Number.zero)
Chris@10 105 let iimag (CE (a, b)) = CE (makeNum Number.zero, b)
Chris@10 106 let conj (CE (a, b)) = CE (a, makeUminus b)
Chris@10 107
Chris@10 108
Chris@10 109 (* abstraction of sum_{i=0}^{n-1} *)
Chris@10 110 let sigma a b f = plus (List.map f (Util.interval a b))
Chris@10 111
Chris@10 112 (* store and assignment operations *)
Chris@10 113 let store_real v (CE (a, b)) = Expr.Store (v, a)
Chris@10 114 let store_imag v (CE (a, b)) = Expr.Store (v, b)
Chris@10 115 let store (vr, vi) x = (store_real vr x, store_imag vi x)
Chris@10 116
Chris@10 117 let assign_real v (CE (a, b)) = Expr.Assign (v, a)
Chris@10 118 let assign_imag v (CE (a, b)) = Expr.Assign (v, b)
Chris@10 119 let assign (vr, vi) x = (assign_real vr x, assign_imag vi x)
Chris@10 120
Chris@10 121
Chris@10 122 (************************
Chris@10 123 shortcuts
Chris@10 124 ************************)
Chris@10 125 let (@*) = times
Chris@10 126 let (@+) a b = plus [a; b]
Chris@10 127 let (@-) a b = plus [a; uminus b]
Chris@10 128
Chris@10 129 (* type of complex signals *)
Chris@10 130 type signal = int -> expr
Chris@10 131
Chris@10 132 (* make a finite signal infinite *)
Chris@10 133 let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero
Chris@10 134
Chris@10 135 let hermitian n a =
Chris@10 136 Util.array n (fun i ->
Chris@10 137 if (i = 0) then real (a 0)
Chris@10 138 else if (i < n - i) then (a i)
Chris@10 139 else if (i > n - i) then conj (a (n - i))
Chris@10 140 else real (a i))
Chris@10 141
Chris@10 142 let antihermitian n a =
Chris@10 143 Util.array n (fun i ->
Chris@10 144 if (i = 0) then iimag (a 0)
Chris@10 145 else if (i < n - i) then (a i)
Chris@10 146 else if (i > n - i) then uminus (conj (a (n - i)))
Chris@10 147 else iimag (a i))