Chris@10
|
1 (*
|
Chris@10
|
2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
4 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
5 *
|
Chris@10
|
6 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
7 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
8 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
9 * (at your option) any later version.
|
Chris@10
|
10 *
|
Chris@10
|
11 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
14 * GNU General Public License for more details.
|
Chris@10
|
15 *
|
Chris@10
|
16 * You should have received a copy of the GNU General Public License
|
Chris@10
|
17 * along with this program; if not, write to the Free Software
|
Chris@10
|
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
19 *
|
Chris@10
|
20 *)
|
Chris@10
|
21
|
Chris@10
|
22 (* abstraction layer for complex operations *)
|
Chris@10
|
23 open Littlesimp
|
Chris@10
|
24 open Expr
|
Chris@10
|
25
|
Chris@10
|
26 (* type of complex expressions *)
|
Chris@10
|
27 type expr = CE of Expr.expr * Expr.expr
|
Chris@10
|
28
|
Chris@10
|
29 let two = CE (makeNum Number.two, makeNum Number.zero)
|
Chris@10
|
30 let one = CE (makeNum Number.one, makeNum Number.zero)
|
Chris@10
|
31 let i = CE (makeNum Number.zero, makeNum Number.one)
|
Chris@10
|
32 let zero = CE (makeNum Number.zero, makeNum Number.zero)
|
Chris@10
|
33 let make (r, i) = CE (r, i)
|
Chris@10
|
34
|
Chris@10
|
35 let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b)
|
Chris@10
|
36
|
Chris@10
|
37 let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)),
|
Chris@10
|
38 makeNum Number.zero)
|
Chris@10
|
39
|
Chris@10
|
40 let inverse_int_sqrt n =
|
Chris@10
|
41 CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))),
|
Chris@10
|
42 makeNum Number.zero)
|
Chris@10
|
43 let int_sqrt n =
|
Chris@10
|
44 CE (makeNum (Number.sqrt (Number.of_int n)),
|
Chris@10
|
45 makeNum Number.zero)
|
Chris@10
|
46
|
Chris@10
|
47 let nan x = CE (NaN x, makeNum Number.zero)
|
Chris@10
|
48
|
Chris@10
|
49 let half = inverse_int 2
|
Chris@10
|
50
|
Chris@10
|
51 let times3x3 (CE (a, b)) (CE (c, d)) =
|
Chris@10
|
52 CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]);
|
Chris@10
|
53 makeTimes (b, makePlus [c; makeUminus (d)])],
|
Chris@10
|
54 makePlus [makeTimes (a, makePlus [c; d]);
|
Chris@10
|
55 makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))])
|
Chris@10
|
56
|
Chris@10
|
57 let times (CE (a, b)) (CE (c, d)) =
|
Chris@10
|
58 if not !Magic.threemult then
|
Chris@10
|
59 CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))],
|
Chris@10
|
60 makePlus [makeTimes (a, d); makeTimes (b, c)])
|
Chris@10
|
61 else if is_constant c && is_constant d then
|
Chris@10
|
62 times3x3 (CE (a, b)) (CE (c, d))
|
Chris@10
|
63 else (* hope a and b are constant expressions *)
|
Chris@10
|
64 times3x3 (CE (c, d)) (CE (a, b))
|
Chris@10
|
65
|
Chris@10
|
66 let ctimes (CE (a, _)) (CE (c, _)) =
|
Chris@10
|
67 CE (CTimes (a, c), makeNum Number.zero)
|
Chris@10
|
68
|
Chris@10
|
69 let ctimesj (CE (a, _)) (CE (c, _)) =
|
Chris@10
|
70 CE (CTimesJ (a, c), makeNum Number.zero)
|
Chris@10
|
71
|
Chris@10
|
72 (* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *)
|
Chris@10
|
73 let exp n i =
|
Chris@10
|
74 let (c, s) = Number.cexp n i
|
Chris@10
|
75 in CE (makeNum c, makeNum s)
|
Chris@10
|
76
|
Chris@10
|
77 (* various trig functions evaluated at (2*pi*i/n * m) *)
|
Chris@10
|
78 let sec n m =
|
Chris@10
|
79 let (c, s) = Number.cexp n m
|
Chris@10
|
80 in CE (makeNum (Number.div Number.one c), makeNum Number.zero)
|
Chris@10
|
81 let csc n m =
|
Chris@10
|
82 let (c, s) = Number.cexp n m
|
Chris@10
|
83 in CE (makeNum (Number.div Number.one s), makeNum Number.zero)
|
Chris@10
|
84 let tan n m =
|
Chris@10
|
85 let (c, s) = Number.cexp n m
|
Chris@10
|
86 in CE (makeNum (Number.div s c), makeNum Number.zero)
|
Chris@10
|
87 let cot n m =
|
Chris@10
|
88 let (c, s) = Number.cexp n m
|
Chris@10
|
89 in CE (makeNum (Number.div c s), makeNum Number.zero)
|
Chris@10
|
90
|
Chris@10
|
91 (* complex sum *)
|
Chris@10
|
92 let plus a =
|
Chris@10
|
93 let rec unzip_complex = function
|
Chris@10
|
94 [] -> ([], [])
|
Chris@10
|
95 | ((CE (a, b)) :: s) ->
|
Chris@10
|
96 let (r,i) = unzip_complex s
|
Chris@10
|
97 in
|
Chris@10
|
98 (a::r), (b::i) in
|
Chris@10
|
99 let (c, d) = unzip_complex a in
|
Chris@10
|
100 CE (makePlus c, makePlus d)
|
Chris@10
|
101
|
Chris@10
|
102 (* extract real/imaginary *)
|
Chris@10
|
103 let real (CE (a, b)) = CE (a, makeNum Number.zero)
|
Chris@10
|
104 let imag (CE (a, b)) = CE (b, makeNum Number.zero)
|
Chris@10
|
105 let iimag (CE (a, b)) = CE (makeNum Number.zero, b)
|
Chris@10
|
106 let conj (CE (a, b)) = CE (a, makeUminus b)
|
Chris@10
|
107
|
Chris@10
|
108
|
Chris@10
|
109 (* abstraction of sum_{i=0}^{n-1} *)
|
Chris@10
|
110 let sigma a b f = plus (List.map f (Util.interval a b))
|
Chris@10
|
111
|
Chris@10
|
112 (* store and assignment operations *)
|
Chris@10
|
113 let store_real v (CE (a, b)) = Expr.Store (v, a)
|
Chris@10
|
114 let store_imag v (CE (a, b)) = Expr.Store (v, b)
|
Chris@10
|
115 let store (vr, vi) x = (store_real vr x, store_imag vi x)
|
Chris@10
|
116
|
Chris@10
|
117 let assign_real v (CE (a, b)) = Expr.Assign (v, a)
|
Chris@10
|
118 let assign_imag v (CE (a, b)) = Expr.Assign (v, b)
|
Chris@10
|
119 let assign (vr, vi) x = (assign_real vr x, assign_imag vi x)
|
Chris@10
|
120
|
Chris@10
|
121
|
Chris@10
|
122 (************************
|
Chris@10
|
123 shortcuts
|
Chris@10
|
124 ************************)
|
Chris@10
|
125 let (@*) = times
|
Chris@10
|
126 let (@+) a b = plus [a; b]
|
Chris@10
|
127 let (@-) a b = plus [a; uminus b]
|
Chris@10
|
128
|
Chris@10
|
129 (* type of complex signals *)
|
Chris@10
|
130 type signal = int -> expr
|
Chris@10
|
131
|
Chris@10
|
132 (* make a finite signal infinite *)
|
Chris@10
|
133 let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero
|
Chris@10
|
134
|
Chris@10
|
135 let hermitian n a =
|
Chris@10
|
136 Util.array n (fun i ->
|
Chris@10
|
137 if (i = 0) then real (a 0)
|
Chris@10
|
138 else if (i < n - i) then (a i)
|
Chris@10
|
139 else if (i > n - i) then conj (a (n - i))
|
Chris@10
|
140 else real (a i))
|
Chris@10
|
141
|
Chris@10
|
142 let antihermitian n a =
|
Chris@10
|
143 Util.array n (fun i ->
|
Chris@10
|
144 if (i = 0) then iimag (a 0)
|
Chris@10
|
145 else if (i < n - i) then (a i)
|
Chris@10
|
146 else if (i > n - i) then uminus (conj (a (n - i)))
|
Chris@10
|
147 else iimag (a i))
|