annotate src/fftw-3.3.3/doc/html/1d-Real_002deven-DFTs-_0028DCTs_0029.html @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 <html lang="en">
Chris@10 2 <head>
Chris@10 3 <title>1d Real-even DFTs (DCTs) - FFTW 3.3.3</title>
Chris@10 4 <meta http-equiv="Content-Type" content="text/html">
Chris@10 5 <meta name="description" content="FFTW 3.3.3">
Chris@10 6 <meta name="generator" content="makeinfo 4.13">
Chris@10 7 <link title="Top" rel="start" href="index.html#Top">
Chris@10 8 <link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
Chris@10 9 <link rel="prev" href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" title="The 1d Real-data DFT">
Chris@10 10 <link rel="next" href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029" title="1d Real-odd DFTs (DSTs)">
Chris@10 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
Chris@10 12 <!--
Chris@10 13 This manual is for FFTW
Chris@10 14 (version 3.3.3, 25 November 2012).
Chris@10 15
Chris@10 16 Copyright (C) 2003 Matteo Frigo.
Chris@10 17
Chris@10 18 Copyright (C) 2003 Massachusetts Institute of Technology.
Chris@10 19
Chris@10 20 Permission is granted to make and distribute verbatim copies of
Chris@10 21 this manual provided the copyright notice and this permission
Chris@10 22 notice are preserved on all copies.
Chris@10 23
Chris@10 24 Permission is granted to copy and distribute modified versions of
Chris@10 25 this manual under the conditions for verbatim copying, provided
Chris@10 26 that the entire resulting derived work is distributed under the
Chris@10 27 terms of a permission notice identical to this one.
Chris@10 28
Chris@10 29 Permission is granted to copy and distribute translations of this
Chris@10 30 manual into another language, under the above conditions for
Chris@10 31 modified versions, except that this permission notice may be
Chris@10 32 stated in a translation approved by the Free Software Foundation.
Chris@10 33 -->
Chris@10 34 <meta http-equiv="Content-Style-Type" content="text/css">
Chris@10 35 <style type="text/css"><!--
Chris@10 36 pre.display { font-family:inherit }
Chris@10 37 pre.format { font-family:inherit }
Chris@10 38 pre.smalldisplay { font-family:inherit; font-size:smaller }
Chris@10 39 pre.smallformat { font-family:inherit; font-size:smaller }
Chris@10 40 pre.smallexample { font-size:smaller }
Chris@10 41 pre.smalllisp { font-size:smaller }
Chris@10 42 span.sc { font-variant:small-caps }
Chris@10 43 span.roman { font-family:serif; font-weight:normal; }
Chris@10 44 span.sansserif { font-family:sans-serif; font-weight:normal; }
Chris@10 45 --></style>
Chris@10 46 </head>
Chris@10 47 <body>
Chris@10 48 <div class="node">
Chris@10 49 <a name="1d-Real-even-DFTs-(DCTs)"></a>
Chris@10 50 <a name="g_t1d-Real_002deven-DFTs-_0028DCTs_0029"></a>
Chris@10 51 <p>
Chris@10 52 Next:&nbsp;<a rel="next" accesskey="n" href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029">1d Real-odd DFTs (DSTs)</a>,
Chris@10 53 Previous:&nbsp;<a rel="previous" accesskey="p" href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT">The 1d Real-data DFT</a>,
Chris@10 54 Up:&nbsp;<a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>
Chris@10 55 <hr>
Chris@10 56 </div>
Chris@10 57
Chris@10 58 <h4 class="subsection">4.8.3 1d Real-even DFTs (DCTs)</h4>
Chris@10 59
Chris@10 60 <p>The Real-even symmetry DFTs in FFTW are exactly equivalent to the unnormalized
Chris@10 61 forward (and backward) DFTs as defined above, where the input array
Chris@10 62 X of length N is purely real and is also <dfn>even</dfn> symmetry. In
Chris@10 63 this case, the output array is likewise real and even symmetry.
Chris@10 64 <a name="index-real_002deven-DFT-301"></a><a name="index-REDFT-302"></a>
Chris@10 65
Chris@10 66 <p><a name="index-REDFT00-303"></a>For the case of <code>REDFT00</code>, this even symmetry means that
Chris@10 67 <i>X<sub>j</sub> = X<sub>N-j</sub></i>,where we take X to be periodic so that
Chris@10 68 <i>X<sub>N</sub> = X</i><sub>0</sub>. Because of this redundancy, only the first n real numbers are
Chris@10 69 actually stored, where N = 2(n-1).
Chris@10 70
Chris@10 71 <p>The proper definition of even symmetry for <code>REDFT10</code>,
Chris@10 72 <code>REDFT01</code>, and <code>REDFT11</code> transforms is somewhat more intricate
Chris@10 73 because of the shifts by 1/2 of the input and/or output, although
Chris@10 74 the corresponding boundary conditions are given in <a href="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029.html#Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029">Real even/odd DFTs (cosine/sine transforms)</a>. Because of the even symmetry, however,
Chris@10 75 the sine terms in the DFT all cancel and the remaining cosine terms are
Chris@10 76 written explicitly below. This formulation often leads people to call
Chris@10 77 such a transform a <dfn>discrete cosine transform</dfn> (DCT), although it is
Chris@10 78 really just a special case of the DFT.
Chris@10 79 <a name="index-discrete-cosine-transform-304"></a><a name="index-DCT-305"></a>
Chris@10 80
Chris@10 81 <p>In each of the definitions below, we transform a real array X of
Chris@10 82 length n to a real array Y of length n:
Chris@10 83
Chris@10 84 <h5 class="subsubheading">REDFT00 (DCT-I)</h5>
Chris@10 85
Chris@10 86 <p><a name="index-REDFT00-306"></a>An <code>REDFT00</code> transform (type-I DCT) in FFTW is defined by:
Chris@10 87 <center><img src="equation-redft00.png" align="top">.</center>Note that this transform is not defined for n=1. For n=2,
Chris@10 88 the summation term above is dropped as you might expect.
Chris@10 89
Chris@10 90 <h5 class="subsubheading">REDFT10 (DCT-II)</h5>
Chris@10 91
Chris@10 92 <p><a name="index-REDFT10-307"></a>An <code>REDFT10</code> transform (type-II DCT, sometimes called &ldquo;the&rdquo; DCT) in FFTW is defined by:
Chris@10 93 <center><img src="equation-redft10.png" align="top">.</center>
Chris@10 94
Chris@10 95 <h5 class="subsubheading">REDFT01 (DCT-III)</h5>
Chris@10 96
Chris@10 97 <p><a name="index-REDFT01-308"></a>An <code>REDFT01</code> transform (type-III DCT) in FFTW is defined by:
Chris@10 98 <center><img src="equation-redft01.png" align="top">.</center>In the case of n=1, this reduces to
Chris@10 99 <i>Y</i><sub>0</sub> = <i>X</i><sub>0</sub>. Up to a scale factor (see below), this is the inverse of <code>REDFT10</code> (&ldquo;the&rdquo; DCT), and so the <code>REDFT01</code> (DCT-III) is sometimes called the &ldquo;IDCT&rdquo;.
Chris@10 100 <a name="index-IDCT-309"></a>
Chris@10 101
Chris@10 102 <h5 class="subsubheading">REDFT11 (DCT-IV)</h5>
Chris@10 103
Chris@10 104 <p><a name="index-REDFT11-310"></a>An <code>REDFT11</code> transform (type-IV DCT) in FFTW is defined by:
Chris@10 105 <center><img src="equation-redft11.png" align="top">.</center>
Chris@10 106
Chris@10 107 <h5 class="subsubheading">Inverses and Normalization</h5>
Chris@10 108
Chris@10 109 <p>These definitions correspond directly to the unnormalized DFTs used
Chris@10 110 elsewhere in FFTW (hence the factors of 2 in front of the
Chris@10 111 summations). The unnormalized inverse of <code>REDFT00</code> is
Chris@10 112 <code>REDFT00</code>, of <code>REDFT10</code> is <code>REDFT01</code> and vice versa, and
Chris@10 113 of <code>REDFT11</code> is <code>REDFT11</code>. Each unnormalized inverse results
Chris@10 114 in the original array multiplied by N, where N is the
Chris@10 115 <em>logical</em> DFT size. For <code>REDFT00</code>, N=2(n-1) (note that
Chris@10 116 n=1 is not defined); otherwise, N=2n.
Chris@10 117 <a name="index-normalization-311"></a>
Chris@10 118
Chris@10 119 <p>In defining the discrete cosine transform, some authors also include
Chris@10 120 additional factors of
Chris@10 121 &radic;2(or its inverse) multiplying selected inputs and/or outputs. This is a
Chris@10 122 mostly cosmetic change that makes the transform orthogonal, but
Chris@10 123 sacrifices the direct equivalence to a symmetric DFT.
Chris@10 124
Chris@10 125 <!-- =========> -->
Chris@10 126 </body></html>
Chris@10 127