Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:38:49 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include t3f.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 37 FP additions, 32 FP multiplications,
|
Chris@10
|
32 * (or, 27 additions, 22 multiplications, 10 fused multiply/add),
|
Chris@10
|
33 * 43 stack variables, 1 constants, and 16 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "t3f.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
40 {
|
Chris@10
|
41 INT m;
|
Chris@10
|
42 R *x;
|
Chris@10
|
43 x = ri;
|
Chris@10
|
44 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
|
Chris@10
|
45 V T2, T3, Tb, T1, T5, Tn, Tq, T8, Td, T4, Ta, Tp, Tg, Ti, T9;
|
Chris@10
|
46 T2 = LDW(&(W[0]));
|
Chris@10
|
47 T3 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
48 Tb = LDW(&(W[TWVL * 4]));
|
Chris@10
|
49 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
50 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
51 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
52 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
53 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
54 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
55 T4 = VZMUL(T2, T3);
|
Chris@10
|
56 Ta = VZMULJ(T2, T3);
|
Chris@10
|
57 Tp = VZMULJ(T2, Tb);
|
Chris@10
|
58 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
59 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
60 T9 = VZMULJ(T2, T8);
|
Chris@10
|
61 {
|
Chris@10
|
62 V T6, To, Tc, Tr, Th, Tj;
|
Chris@10
|
63 T6 = VZMULJ(T4, T5);
|
Chris@10
|
64 To = VZMULJ(Ta, Tn);
|
Chris@10
|
65 Tc = VZMULJ(Ta, Tb);
|
Chris@10
|
66 Tr = VZMULJ(Tp, Tq);
|
Chris@10
|
67 Th = VZMULJ(Tb, Tg);
|
Chris@10
|
68 Tj = VZMULJ(T3, Ti);
|
Chris@10
|
69 {
|
Chris@10
|
70 V Tx, T7, Te, Ts, Ty, Tk, TB;
|
Chris@10
|
71 Tx = VADD(T1, T6);
|
Chris@10
|
72 T7 = VSUB(T1, T6);
|
Chris@10
|
73 Te = VZMULJ(Tc, Td);
|
Chris@10
|
74 Ts = VSUB(To, Tr);
|
Chris@10
|
75 Ty = VADD(To, Tr);
|
Chris@10
|
76 Tk = VSUB(Th, Tj);
|
Chris@10
|
77 TB = VADD(Th, Tj);
|
Chris@10
|
78 {
|
Chris@10
|
79 V Tf, TA, Tz, TD;
|
Chris@10
|
80 Tf = VSUB(T9, Te);
|
Chris@10
|
81 TA = VADD(T9, Te);
|
Chris@10
|
82 Tz = VADD(Tx, Ty);
|
Chris@10
|
83 TD = VSUB(Tx, Ty);
|
Chris@10
|
84 {
|
Chris@10
|
85 V TC, TE, Tl, Tt;
|
Chris@10
|
86 TC = VADD(TA, TB);
|
Chris@10
|
87 TE = VSUB(TB, TA);
|
Chris@10
|
88 Tl = VADD(Tf, Tk);
|
Chris@10
|
89 Tt = VSUB(Tk, Tf);
|
Chris@10
|
90 {
|
Chris@10
|
91 V Tu, Tw, Tm, Tv;
|
Chris@10
|
92 ST(&(x[WS(rs, 2)]), VFMAI(TE, TD), ms, &(x[0]));
|
Chris@10
|
93 ST(&(x[WS(rs, 6)]), VFNMSI(TE, TD), ms, &(x[0]));
|
Chris@10
|
94 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
|
Chris@10
|
95 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
|
Chris@10
|
96 Tu = VFNMS(LDK(KP707106781), Tt, Ts);
|
Chris@10
|
97 Tw = VFMA(LDK(KP707106781), Tt, Ts);
|
Chris@10
|
98 Tm = VFMA(LDK(KP707106781), Tl, T7);
|
Chris@10
|
99 Tv = VFNMS(LDK(KP707106781), Tl, T7);
|
Chris@10
|
100 ST(&(x[WS(rs, 5)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
101 ST(&(x[WS(rs, 3)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
102 ST(&(x[WS(rs, 7)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
103 ST(&(x[WS(rs, 1)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
104 }
|
Chris@10
|
105 }
|
Chris@10
|
106 }
|
Chris@10
|
107 }
|
Chris@10
|
108 }
|
Chris@10
|
109 }
|
Chris@10
|
110 }
|
Chris@10
|
111 VLEAVE();
|
Chris@10
|
112 }
|
Chris@10
|
113
|
Chris@10
|
114 static const tw_instr twinstr[] = {
|
Chris@10
|
115 VTW(0, 1),
|
Chris@10
|
116 VTW(0, 3),
|
Chris@10
|
117 VTW(0, 7),
|
Chris@10
|
118 {TW_NEXT, VL, 0}
|
Chris@10
|
119 };
|
Chris@10
|
120
|
Chris@10
|
121 static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {27, 22, 10, 0}, 0, 0, 0 };
|
Chris@10
|
122
|
Chris@10
|
123 void XSIMD(codelet_t3fv_8) (planner *p) {
|
Chris@10
|
124 X(kdft_dit_register) (p, t3fv_8, &desc);
|
Chris@10
|
125 }
|
Chris@10
|
126 #else /* HAVE_FMA */
|
Chris@10
|
127
|
Chris@10
|
128 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include t3f.h */
|
Chris@10
|
129
|
Chris@10
|
130 /*
|
Chris@10
|
131 * This function contains 37 FP additions, 24 FP multiplications,
|
Chris@10
|
132 * (or, 37 additions, 24 multiplications, 0 fused multiply/add),
|
Chris@10
|
133 * 31 stack variables, 1 constants, and 16 memory accesses
|
Chris@10
|
134 */
|
Chris@10
|
135 #include "t3f.h"
|
Chris@10
|
136
|
Chris@10
|
137 static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
138 {
|
Chris@10
|
139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
140 {
|
Chris@10
|
141 INT m;
|
Chris@10
|
142 R *x;
|
Chris@10
|
143 x = ri;
|
Chris@10
|
144 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
|
Chris@10
|
145 V T2, T3, Ta, T4, Tb, Tc, Tq;
|
Chris@10
|
146 T2 = LDW(&(W[0]));
|
Chris@10
|
147 T3 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
148 Ta = VZMULJ(T2, T3);
|
Chris@10
|
149 T4 = VZMUL(T2, T3);
|
Chris@10
|
150 Tb = LDW(&(W[TWVL * 4]));
|
Chris@10
|
151 Tc = VZMULJ(Ta, Tb);
|
Chris@10
|
152 Tq = VZMULJ(T2, Tb);
|
Chris@10
|
153 {
|
Chris@10
|
154 V T7, Tx, Tt, Ty, Tf, TA, Tk, TB, T1, T6, T5;
|
Chris@10
|
155 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
156 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
157 T6 = VZMULJ(T4, T5);
|
Chris@10
|
158 T7 = VSUB(T1, T6);
|
Chris@10
|
159 Tx = VADD(T1, T6);
|
Chris@10
|
160 {
|
Chris@10
|
161 V Tp, Ts, To, Tr;
|
Chris@10
|
162 To = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
163 Tp = VZMULJ(Ta, To);
|
Chris@10
|
164 Tr = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
165 Ts = VZMULJ(Tq, Tr);
|
Chris@10
|
166 Tt = VSUB(Tp, Ts);
|
Chris@10
|
167 Ty = VADD(Tp, Ts);
|
Chris@10
|
168 }
|
Chris@10
|
169 {
|
Chris@10
|
170 V T9, Te, T8, Td;
|
Chris@10
|
171 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
172 T9 = VZMULJ(T2, T8);
|
Chris@10
|
173 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
174 Te = VZMULJ(Tc, Td);
|
Chris@10
|
175 Tf = VSUB(T9, Te);
|
Chris@10
|
176 TA = VADD(T9, Te);
|
Chris@10
|
177 }
|
Chris@10
|
178 {
|
Chris@10
|
179 V Th, Tj, Tg, Ti;
|
Chris@10
|
180 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
181 Th = VZMULJ(Tb, Tg);
|
Chris@10
|
182 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
183 Tj = VZMULJ(T3, Ti);
|
Chris@10
|
184 Tk = VSUB(Th, Tj);
|
Chris@10
|
185 TB = VADD(Th, Tj);
|
Chris@10
|
186 }
|
Chris@10
|
187 {
|
Chris@10
|
188 V Tz, TC, TD, TE;
|
Chris@10
|
189 Tz = VADD(Tx, Ty);
|
Chris@10
|
190 TC = VADD(TA, TB);
|
Chris@10
|
191 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
|
Chris@10
|
192 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
|
Chris@10
|
193 TD = VSUB(Tx, Ty);
|
Chris@10
|
194 TE = VBYI(VSUB(TB, TA));
|
Chris@10
|
195 ST(&(x[WS(rs, 6)]), VSUB(TD, TE), ms, &(x[0]));
|
Chris@10
|
196 ST(&(x[WS(rs, 2)]), VADD(TD, TE), ms, &(x[0]));
|
Chris@10
|
197 {
|
Chris@10
|
198 V Tm, Tv, Tu, Tw, Tl, Tn;
|
Chris@10
|
199 Tl = VMUL(LDK(KP707106781), VADD(Tf, Tk));
|
Chris@10
|
200 Tm = VADD(T7, Tl);
|
Chris@10
|
201 Tv = VSUB(T7, Tl);
|
Chris@10
|
202 Tn = VMUL(LDK(KP707106781), VSUB(Tk, Tf));
|
Chris@10
|
203 Tu = VBYI(VSUB(Tn, Tt));
|
Chris@10
|
204 Tw = VBYI(VADD(Tt, Tn));
|
Chris@10
|
205 ST(&(x[WS(rs, 7)]), VSUB(Tm, Tu), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
206 ST(&(x[WS(rs, 3)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
207 ST(&(x[WS(rs, 1)]), VADD(Tm, Tu), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
208 ST(&(x[WS(rs, 5)]), VSUB(Tv, Tw), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
209 }
|
Chris@10
|
210 }
|
Chris@10
|
211 }
|
Chris@10
|
212 }
|
Chris@10
|
213 }
|
Chris@10
|
214 VLEAVE();
|
Chris@10
|
215 }
|
Chris@10
|
216
|
Chris@10
|
217 static const tw_instr twinstr[] = {
|
Chris@10
|
218 VTW(0, 1),
|
Chris@10
|
219 VTW(0, 3),
|
Chris@10
|
220 VTW(0, 7),
|
Chris@10
|
221 {TW_NEXT, VL, 0}
|
Chris@10
|
222 };
|
Chris@10
|
223
|
Chris@10
|
224 static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {37, 24, 0, 0}, 0, 0, 0 };
|
Chris@10
|
225
|
Chris@10
|
226 void XSIMD(codelet_t3fv_8) (planner *p) {
|
Chris@10
|
227 X(kdft_dit_register) (p, t3fv_8, &desc);
|
Chris@10
|
228 }
|
Chris@10
|
229 #endif /* HAVE_FMA */
|