Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:38:55 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3fv_20 -include t3f.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 138 FP additions, 118 FP multiplications,
|
Chris@10
|
32 * (or, 92 additions, 72 multiplications, 46 fused multiply/add),
|
Chris@10
|
33 * 90 stack variables, 4 constants, and 40 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "t3f.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t3fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
40 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
43 {
|
Chris@10
|
44 INT m;
|
Chris@10
|
45 R *x;
|
Chris@10
|
46 x = ri;
|
Chris@10
|
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) {
|
Chris@10
|
48 V T1k, T1w, T1r, T1z, T1o, T1y, T1v, T1h;
|
Chris@10
|
49 {
|
Chris@10
|
50 V T2, T8, T3, Td;
|
Chris@10
|
51 T2 = LDW(&(W[0]));
|
Chris@10
|
52 T8 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
53 T3 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
54 Td = LDW(&(W[TWVL * 6]));
|
Chris@10
|
55 {
|
Chris@10
|
56 V T7, TM, T1F, T23, T1p, Tp, T1j, T27, T1P, T1I, T1i, T1L, T28, T1S, T1q;
|
Chris@10
|
57 V TE, T1n, T1d, T26, T2e;
|
Chris@10
|
58 {
|
Chris@10
|
59 V T1, TK, T5, TH;
|
Chris@10
|
60 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
61 TK = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
62 T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
63 TH = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
64 {
|
Chris@10
|
65 V TA, Tx, TU, T1O, T14, Th, T1G, T1R, T1b, T1J, To, Ts, TV, Tv, TO;
|
Chris@10
|
66 V TQ, TT, Ty, TB;
|
Chris@10
|
67 {
|
Chris@10
|
68 V Tq, Tt, T17, T1a, Tk, Tn;
|
Chris@10
|
69 {
|
Chris@10
|
70 V Tl, Ti, T15, T18, TZ, Tc, T6, Tb, Tf, T10, T12, TL;
|
Chris@10
|
71 {
|
Chris@10
|
72 V TJ, Ta, T9, T4;
|
Chris@10
|
73 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
74 TA = VZMULJ(T2, T8);
|
Chris@10
|
75 T9 = VZMUL(T2, T8);
|
Chris@10
|
76 Tx = VZMUL(T8, T3);
|
Chris@10
|
77 Tl = VZMULJ(T8, T3);
|
Chris@10
|
78 T4 = VZMUL(T2, T3);
|
Chris@10
|
79 Tq = VZMULJ(T2, T3);
|
Chris@10
|
80 Tt = VZMULJ(T2, Td);
|
Chris@10
|
81 Ti = VZMULJ(T8, Td);
|
Chris@10
|
82 T15 = VZMULJ(TA, Td);
|
Chris@10
|
83 T18 = VZMULJ(TA, T3);
|
Chris@10
|
84 TU = VZMUL(TA, T3);
|
Chris@10
|
85 TJ = VZMULJ(T9, Td);
|
Chris@10
|
86 TZ = VZMUL(T9, T3);
|
Chris@10
|
87 Tc = VZMULJ(T9, T3);
|
Chris@10
|
88 T6 = VZMULJ(T4, T5);
|
Chris@10
|
89 Tb = VZMULJ(T9, Ta);
|
Chris@10
|
90 Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
Chris@10
|
91 T10 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
92 T12 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
93 TL = VZMULJ(TJ, TK);
|
Chris@10
|
94 }
|
Chris@10
|
95 {
|
Chris@10
|
96 V T1D, T11, T13, T19, T1E, Tg, T16, TI, Te, Tj, Tm;
|
Chris@10
|
97 T16 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
98 TI = VZMULJ(Tc, TH);
|
Chris@10
|
99 Te = VZMULJ(Tc, Td);
|
Chris@10
|
100 T7 = VSUB(T1, T6);
|
Chris@10
|
101 T1D = VADD(T1, T6);
|
Chris@10
|
102 T11 = VZMULJ(TZ, T10);
|
Chris@10
|
103 T13 = VZMULJ(T8, T12);
|
Chris@10
|
104 T19 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
105 T17 = VZMULJ(T15, T16);
|
Chris@10
|
106 TM = VSUB(TI, TL);
|
Chris@10
|
107 T1E = VADD(TI, TL);
|
Chris@10
|
108 Tg = VZMULJ(Te, Tf);
|
Chris@10
|
109 Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0]));
|
Chris@10
|
110 Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
111 T1O = VADD(T11, T13);
|
Chris@10
|
112 T14 = VSUB(T11, T13);
|
Chris@10
|
113 T1a = VZMULJ(T18, T19);
|
Chris@10
|
114 T1F = VSUB(T1D, T1E);
|
Chris@10
|
115 T23 = VADD(T1D, T1E);
|
Chris@10
|
116 Th = VSUB(Tb, Tg);
|
Chris@10
|
117 T1G = VADD(Tb, Tg);
|
Chris@10
|
118 Tk = VZMULJ(Ti, Tj);
|
Chris@10
|
119 Tn = VZMULJ(Tl, Tm);
|
Chris@10
|
120 }
|
Chris@10
|
121 }
|
Chris@10
|
122 {
|
Chris@10
|
123 V Tr, Tu, TN, TP, TS;
|
Chris@10
|
124 Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
125 T1R = VADD(T17, T1a);
|
Chris@10
|
126 T1b = VSUB(T17, T1a);
|
Chris@10
|
127 Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0]));
|
Chris@10
|
128 TN = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
129 TP = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
130 TS = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
131 T1J = VADD(Tk, Tn);
|
Chris@10
|
132 To = VSUB(Tk, Tn);
|
Chris@10
|
133 Ts = VZMULJ(Tq, Tr);
|
Chris@10
|
134 TV = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
135 Tv = VZMULJ(Tt, Tu);
|
Chris@10
|
136 TO = VZMULJ(T3, TN);
|
Chris@10
|
137 TQ = VZMULJ(Td, TP);
|
Chris@10
|
138 TT = VZMULJ(T2, TS);
|
Chris@10
|
139 Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
Chris@10
|
140 TB = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
141 }
|
Chris@10
|
142 }
|
Chris@10
|
143 {
|
Chris@10
|
144 V T1N, Tw, T1H, TR, Tz, TC, T1c, TX, T1K, TW;
|
Chris@10
|
145 T1p = VSUB(Th, To);
|
Chris@10
|
146 Tp = VADD(Th, To);
|
Chris@10
|
147 TW = VZMULJ(TU, TV);
|
Chris@10
|
148 T1N = VADD(Ts, Tv);
|
Chris@10
|
149 Tw = VSUB(Ts, Tv);
|
Chris@10
|
150 T1H = VADD(TO, TQ);
|
Chris@10
|
151 TR = VSUB(TO, TQ);
|
Chris@10
|
152 Tz = VZMULJ(Tx, Ty);
|
Chris@10
|
153 TC = VZMULJ(TA, TB);
|
Chris@10
|
154 T1j = VSUB(T1b, T14);
|
Chris@10
|
155 T1c = VADD(T14, T1b);
|
Chris@10
|
156 TX = VSUB(TT, TW);
|
Chris@10
|
157 T1K = VADD(TT, TW);
|
Chris@10
|
158 T27 = VADD(T1N, T1O);
|
Chris@10
|
159 T1P = VSUB(T1N, T1O);
|
Chris@10
|
160 {
|
Chris@10
|
161 V TD, T1Q, T24, TY, T25;
|
Chris@10
|
162 TD = VSUB(Tz, TC);
|
Chris@10
|
163 T1Q = VADD(Tz, TC);
|
Chris@10
|
164 T1I = VSUB(T1G, T1H);
|
Chris@10
|
165 T24 = VADD(T1G, T1H);
|
Chris@10
|
166 TY = VADD(TR, TX);
|
Chris@10
|
167 T1i = VSUB(TX, TR);
|
Chris@10
|
168 T25 = VADD(T1J, T1K);
|
Chris@10
|
169 T1L = VSUB(T1J, T1K);
|
Chris@10
|
170 T28 = VADD(T1Q, T1R);
|
Chris@10
|
171 T1S = VSUB(T1Q, T1R);
|
Chris@10
|
172 T1q = VSUB(Tw, TD);
|
Chris@10
|
173 TE = VADD(Tw, TD);
|
Chris@10
|
174 T1n = VSUB(T1c, TY);
|
Chris@10
|
175 T1d = VADD(TY, T1c);
|
Chris@10
|
176 T26 = VADD(T24, T25);
|
Chris@10
|
177 T2e = VSUB(T24, T25);
|
Chris@10
|
178 }
|
Chris@10
|
179 }
|
Chris@10
|
180 }
|
Chris@10
|
181 }
|
Chris@10
|
182 {
|
Chris@10
|
183 V T1M, T1Z, T1Y, T1T, T29, T2f, T1g, TF, T1m, T1e;
|
Chris@10
|
184 T1M = VADD(T1I, T1L);
|
Chris@10
|
185 T1Z = VSUB(T1I, T1L);
|
Chris@10
|
186 T1Y = VSUB(T1P, T1S);
|
Chris@10
|
187 T1T = VADD(T1P, T1S);
|
Chris@10
|
188 T29 = VADD(T27, T28);
|
Chris@10
|
189 T2f = VSUB(T27, T28);
|
Chris@10
|
190 T1g = VSUB(Tp, TE);
|
Chris@10
|
191 TF = VADD(Tp, TE);
|
Chris@10
|
192 T1m = VFNMS(LDK(KP250000000), T1d, TM);
|
Chris@10
|
193 T1e = VADD(TM, T1d);
|
Chris@10
|
194 {
|
Chris@10
|
195 V T1W, T2c, T1f, T2i, T2g, T22, T20, T1V, T2b, T1U, T2a, TG;
|
Chris@10
|
196 T1k = VFMA(LDK(KP618033988), T1j, T1i);
|
Chris@10
|
197 T1w = VFNMS(LDK(KP618033988), T1i, T1j);
|
Chris@10
|
198 T1W = VSUB(T1M, T1T);
|
Chris@10
|
199 T1U = VADD(T1M, T1T);
|
Chris@10
|
200 T2c = VSUB(T26, T29);
|
Chris@10
|
201 T2a = VADD(T26, T29);
|
Chris@10
|
202 T1f = VFNMS(LDK(KP250000000), TF, T7);
|
Chris@10
|
203 TG = VADD(T7, TF);
|
Chris@10
|
204 T2i = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T2e, T2f));
|
Chris@10
|
205 T2g = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T2f, T2e));
|
Chris@10
|
206 T22 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1Y, T1Z));
|
Chris@10
|
207 T20 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1Z, T1Y));
|
Chris@10
|
208 ST(&(x[WS(rs, 10)]), VADD(T1F, T1U), ms, &(x[0]));
|
Chris@10
|
209 T1V = VFNMS(LDK(KP250000000), T1U, T1F);
|
Chris@10
|
210 ST(&(x[0]), VADD(T23, T2a), ms, &(x[0]));
|
Chris@10
|
211 T2b = VFNMS(LDK(KP250000000), T2a, T23);
|
Chris@10
|
212 ST(&(x[WS(rs, 15)]), VFMAI(T1e, TG), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
213 ST(&(x[WS(rs, 5)]), VFNMSI(T1e, TG), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
214 T1r = VFMA(LDK(KP618033988), T1q, T1p);
|
Chris@10
|
215 T1z = VFNMS(LDK(KP618033988), T1p, T1q);
|
Chris@10
|
216 {
|
Chris@10
|
217 V T21, T1X, T2h, T2d;
|
Chris@10
|
218 T21 = VFMA(LDK(KP559016994), T1W, T1V);
|
Chris@10
|
219 T1X = VFNMS(LDK(KP559016994), T1W, T1V);
|
Chris@10
|
220 T2h = VFNMS(LDK(KP559016994), T2c, T2b);
|
Chris@10
|
221 T2d = VFMA(LDK(KP559016994), T2c, T2b);
|
Chris@10
|
222 ST(&(x[WS(rs, 18)]), VFNMSI(T20, T1X), ms, &(x[0]));
|
Chris@10
|
223 ST(&(x[WS(rs, 2)]), VFMAI(T20, T1X), ms, &(x[0]));
|
Chris@10
|
224 ST(&(x[WS(rs, 14)]), VFMAI(T22, T21), ms, &(x[0]));
|
Chris@10
|
225 ST(&(x[WS(rs, 6)]), VFNMSI(T22, T21), ms, &(x[0]));
|
Chris@10
|
226 ST(&(x[WS(rs, 16)]), VFNMSI(T2g, T2d), ms, &(x[0]));
|
Chris@10
|
227 ST(&(x[WS(rs, 4)]), VFMAI(T2g, T2d), ms, &(x[0]));
|
Chris@10
|
228 ST(&(x[WS(rs, 12)]), VFMAI(T2i, T2h), ms, &(x[0]));
|
Chris@10
|
229 ST(&(x[WS(rs, 8)]), VFNMSI(T2i, T2h), ms, &(x[0]));
|
Chris@10
|
230 T1o = VFNMS(LDK(KP559016994), T1n, T1m);
|
Chris@10
|
231 T1y = VFMA(LDK(KP559016994), T1n, T1m);
|
Chris@10
|
232 T1v = VFNMS(LDK(KP559016994), T1g, T1f);
|
Chris@10
|
233 T1h = VFMA(LDK(KP559016994), T1g, T1f);
|
Chris@10
|
234 }
|
Chris@10
|
235 }
|
Chris@10
|
236 }
|
Chris@10
|
237 }
|
Chris@10
|
238 }
|
Chris@10
|
239 {
|
Chris@10
|
240 V T1C, T1A, T1s, T1u, T1l, T1t, T1B, T1x;
|
Chris@10
|
241 T1C = VFMA(LDK(KP951056516), T1z, T1y);
|
Chris@10
|
242 T1A = VFNMS(LDK(KP951056516), T1z, T1y);
|
Chris@10
|
243 T1s = VFMA(LDK(KP951056516), T1r, T1o);
|
Chris@10
|
244 T1u = VFNMS(LDK(KP951056516), T1r, T1o);
|
Chris@10
|
245 T1l = VFMA(LDK(KP951056516), T1k, T1h);
|
Chris@10
|
246 T1t = VFNMS(LDK(KP951056516), T1k, T1h);
|
Chris@10
|
247 T1B = VFMA(LDK(KP951056516), T1w, T1v);
|
Chris@10
|
248 T1x = VFNMS(LDK(KP951056516), T1w, T1v);
|
Chris@10
|
249 ST(&(x[WS(rs, 11)]), VFMAI(T1u, T1t), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
250 ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
251 ST(&(x[WS(rs, 19)]), VFMAI(T1s, T1l), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
252 ST(&(x[WS(rs, 1)]), VFNMSI(T1s, T1l), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
253 ST(&(x[WS(rs, 3)]), VFMAI(T1A, T1x), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
254 ST(&(x[WS(rs, 17)]), VFNMSI(T1A, T1x), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
255 ST(&(x[WS(rs, 7)]), VFMAI(T1C, T1B), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
256 ST(&(x[WS(rs, 13)]), VFNMSI(T1C, T1B), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
257 }
|
Chris@10
|
258 }
|
Chris@10
|
259 }
|
Chris@10
|
260 VLEAVE();
|
Chris@10
|
261 }
|
Chris@10
|
262
|
Chris@10
|
263 static const tw_instr twinstr[] = {
|
Chris@10
|
264 VTW(0, 1),
|
Chris@10
|
265 VTW(0, 3),
|
Chris@10
|
266 VTW(0, 9),
|
Chris@10
|
267 VTW(0, 19),
|
Chris@10
|
268 {TW_NEXT, VL, 0}
|
Chris@10
|
269 };
|
Chris@10
|
270
|
Chris@10
|
271 static const ct_desc desc = { 20, XSIMD_STRING("t3fv_20"), twinstr, &GENUS, {92, 72, 46, 0}, 0, 0, 0 };
|
Chris@10
|
272
|
Chris@10
|
273 void XSIMD(codelet_t3fv_20) (planner *p) {
|
Chris@10
|
274 X(kdft_dit_register) (p, t3fv_20, &desc);
|
Chris@10
|
275 }
|
Chris@10
|
276 #else /* HAVE_FMA */
|
Chris@10
|
277
|
Chris@10
|
278 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3fv_20 -include t3f.h */
|
Chris@10
|
279
|
Chris@10
|
280 /*
|
Chris@10
|
281 * This function contains 138 FP additions, 92 FP multiplications,
|
Chris@10
|
282 * (or, 126 additions, 80 multiplications, 12 fused multiply/add),
|
Chris@10
|
283 * 73 stack variables, 4 constants, and 40 memory accesses
|
Chris@10
|
284 */
|
Chris@10
|
285 #include "t3f.h"
|
Chris@10
|
286
|
Chris@10
|
287 static void t3fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
288 {
|
Chris@10
|
289 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
Chris@10
|
290 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
291 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
292 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
293 {
|
Chris@10
|
294 INT m;
|
Chris@10
|
295 R *x;
|
Chris@10
|
296 x = ri;
|
Chris@10
|
297 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) {
|
Chris@10
|
298 V T2, T8, T9, TA, T3, Tc, T4, TZ, T18, Tl, Tq, Tx, TU, Td, Te;
|
Chris@10
|
299 V T15, Ti, Tt, TJ;
|
Chris@10
|
300 T2 = LDW(&(W[0]));
|
Chris@10
|
301 T8 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
302 T9 = VZMUL(T2, T8);
|
Chris@10
|
303 TA = VZMULJ(T2, T8);
|
Chris@10
|
304 T3 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
305 Tc = VZMULJ(T9, T3);
|
Chris@10
|
306 T4 = VZMUL(T2, T3);
|
Chris@10
|
307 TZ = VZMUL(T9, T3);
|
Chris@10
|
308 T18 = VZMULJ(TA, T3);
|
Chris@10
|
309 Tl = VZMULJ(T8, T3);
|
Chris@10
|
310 Tq = VZMULJ(T2, T3);
|
Chris@10
|
311 Tx = VZMUL(T8, T3);
|
Chris@10
|
312 TU = VZMUL(TA, T3);
|
Chris@10
|
313 Td = LDW(&(W[TWVL * 6]));
|
Chris@10
|
314 Te = VZMULJ(Tc, Td);
|
Chris@10
|
315 T15 = VZMULJ(TA, Td);
|
Chris@10
|
316 Ti = VZMULJ(T8, Td);
|
Chris@10
|
317 Tt = VZMULJ(T2, Td);
|
Chris@10
|
318 TJ = VZMULJ(T9, Td);
|
Chris@10
|
319 {
|
Chris@10
|
320 V T7, TM, T1U, T2d, T1i, T1p, T1q, T1j, Tp, TE, TF, T26, T27, T2b, T1M;
|
Chris@10
|
321 V T1P, T1V, TY, T1c, T1d, T23, T24, T2a, T1F, T1I, T1W, TG, T1e;
|
Chris@10
|
322 {
|
Chris@10
|
323 V T1, TL, T6, TI, TK, T5, TH, T1S, T1T;
|
Chris@10
|
324 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
325 TK = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
326 TL = VZMULJ(TJ, TK);
|
Chris@10
|
327 T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
328 T6 = VZMULJ(T4, T5);
|
Chris@10
|
329 TH = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
330 TI = VZMULJ(Tc, TH);
|
Chris@10
|
331 T7 = VSUB(T1, T6);
|
Chris@10
|
332 TM = VSUB(TI, TL);
|
Chris@10
|
333 T1S = VADD(T1, T6);
|
Chris@10
|
334 T1T = VADD(TI, TL);
|
Chris@10
|
335 T1U = VSUB(T1S, T1T);
|
Chris@10
|
336 T2d = VADD(T1S, T1T);
|
Chris@10
|
337 }
|
Chris@10
|
338 {
|
Chris@10
|
339 V Th, T1K, T14, T1E, T1b, T1H, To, T1N, Tw, T1D, TR, T1L, TX, T1O, TD;
|
Chris@10
|
340 V T1G;
|
Chris@10
|
341 {
|
Chris@10
|
342 V Tb, Tg, Ta, Tf;
|
Chris@10
|
343 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
344 Tb = VZMULJ(T9, Ta);
|
Chris@10
|
345 Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
Chris@10
|
346 Tg = VZMULJ(Te, Tf);
|
Chris@10
|
347 Th = VSUB(Tb, Tg);
|
Chris@10
|
348 T1K = VADD(Tb, Tg);
|
Chris@10
|
349 }
|
Chris@10
|
350 {
|
Chris@10
|
351 V T11, T13, T10, T12;
|
Chris@10
|
352 T10 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
353 T11 = VZMULJ(TZ, T10);
|
Chris@10
|
354 T12 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
355 T13 = VZMULJ(T8, T12);
|
Chris@10
|
356 T14 = VSUB(T11, T13);
|
Chris@10
|
357 T1E = VADD(T11, T13);
|
Chris@10
|
358 }
|
Chris@10
|
359 {
|
Chris@10
|
360 V T17, T1a, T16, T19;
|
Chris@10
|
361 T16 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
362 T17 = VZMULJ(T15, T16);
|
Chris@10
|
363 T19 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
364 T1a = VZMULJ(T18, T19);
|
Chris@10
|
365 T1b = VSUB(T17, T1a);
|
Chris@10
|
366 T1H = VADD(T17, T1a);
|
Chris@10
|
367 }
|
Chris@10
|
368 {
|
Chris@10
|
369 V Tk, Tn, Tj, Tm;
|
Chris@10
|
370 Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0]));
|
Chris@10
|
371 Tk = VZMULJ(Ti, Tj);
|
Chris@10
|
372 Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
373 Tn = VZMULJ(Tl, Tm);
|
Chris@10
|
374 To = VSUB(Tk, Tn);
|
Chris@10
|
375 T1N = VADD(Tk, Tn);
|
Chris@10
|
376 }
|
Chris@10
|
377 {
|
Chris@10
|
378 V Ts, Tv, Tr, Tu;
|
Chris@10
|
379 Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
380 Ts = VZMULJ(Tq, Tr);
|
Chris@10
|
381 Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0]));
|
Chris@10
|
382 Tv = VZMULJ(Tt, Tu);
|
Chris@10
|
383 Tw = VSUB(Ts, Tv);
|
Chris@10
|
384 T1D = VADD(Ts, Tv);
|
Chris@10
|
385 }
|
Chris@10
|
386 {
|
Chris@10
|
387 V TO, TQ, TN, TP;
|
Chris@10
|
388 TN = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
389 TO = VZMULJ(T3, TN);
|
Chris@10
|
390 TP = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
391 TQ = VZMULJ(Td, TP);
|
Chris@10
|
392 TR = VSUB(TO, TQ);
|
Chris@10
|
393 T1L = VADD(TO, TQ);
|
Chris@10
|
394 }
|
Chris@10
|
395 {
|
Chris@10
|
396 V TT, TW, TS, TV;
|
Chris@10
|
397 TS = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
398 TT = VZMULJ(T2, TS);
|
Chris@10
|
399 TV = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
400 TW = VZMULJ(TU, TV);
|
Chris@10
|
401 TX = VSUB(TT, TW);
|
Chris@10
|
402 T1O = VADD(TT, TW);
|
Chris@10
|
403 }
|
Chris@10
|
404 {
|
Chris@10
|
405 V Tz, TC, Ty, TB;
|
Chris@10
|
406 Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
Chris@10
|
407 Tz = VZMULJ(Tx, Ty);
|
Chris@10
|
408 TB = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
409 TC = VZMULJ(TA, TB);
|
Chris@10
|
410 TD = VSUB(Tz, TC);
|
Chris@10
|
411 T1G = VADD(Tz, TC);
|
Chris@10
|
412 }
|
Chris@10
|
413 T1i = VSUB(TX, TR);
|
Chris@10
|
414 T1p = VSUB(Th, To);
|
Chris@10
|
415 T1q = VSUB(Tw, TD);
|
Chris@10
|
416 T1j = VSUB(T1b, T14);
|
Chris@10
|
417 Tp = VADD(Th, To);
|
Chris@10
|
418 TE = VADD(Tw, TD);
|
Chris@10
|
419 TF = VADD(Tp, TE);
|
Chris@10
|
420 T26 = VADD(T1D, T1E);
|
Chris@10
|
421 T27 = VADD(T1G, T1H);
|
Chris@10
|
422 T2b = VADD(T26, T27);
|
Chris@10
|
423 T1M = VSUB(T1K, T1L);
|
Chris@10
|
424 T1P = VSUB(T1N, T1O);
|
Chris@10
|
425 T1V = VADD(T1M, T1P);
|
Chris@10
|
426 TY = VADD(TR, TX);
|
Chris@10
|
427 T1c = VADD(T14, T1b);
|
Chris@10
|
428 T1d = VADD(TY, T1c);
|
Chris@10
|
429 T23 = VADD(T1K, T1L);
|
Chris@10
|
430 T24 = VADD(T1N, T1O);
|
Chris@10
|
431 T2a = VADD(T23, T24);
|
Chris@10
|
432 T1F = VSUB(T1D, T1E);
|
Chris@10
|
433 T1I = VSUB(T1G, T1H);
|
Chris@10
|
434 T1W = VADD(T1F, T1I);
|
Chris@10
|
435 }
|
Chris@10
|
436 TG = VADD(T7, TF);
|
Chris@10
|
437 T1e = VBYI(VADD(TM, T1d));
|
Chris@10
|
438 ST(&(x[WS(rs, 5)]), VSUB(TG, T1e), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
439 ST(&(x[WS(rs, 15)]), VADD(TG, T1e), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
440 {
|
Chris@10
|
441 V T2c, T2e, T2f, T29, T2i, T25, T28, T2h, T2g;
|
Chris@10
|
442 T2c = VMUL(LDK(KP559016994), VSUB(T2a, T2b));
|
Chris@10
|
443 T2e = VADD(T2a, T2b);
|
Chris@10
|
444 T2f = VFNMS(LDK(KP250000000), T2e, T2d);
|
Chris@10
|
445 T25 = VSUB(T23, T24);
|
Chris@10
|
446 T28 = VSUB(T26, T27);
|
Chris@10
|
447 T29 = VBYI(VFMA(LDK(KP951056516), T25, VMUL(LDK(KP587785252), T28)));
|
Chris@10
|
448 T2i = VBYI(VFNMS(LDK(KP587785252), T25, VMUL(LDK(KP951056516), T28)));
|
Chris@10
|
449 ST(&(x[0]), VADD(T2d, T2e), ms, &(x[0]));
|
Chris@10
|
450 T2h = VSUB(T2f, T2c);
|
Chris@10
|
451 ST(&(x[WS(rs, 8)]), VSUB(T2h, T2i), ms, &(x[0]));
|
Chris@10
|
452 ST(&(x[WS(rs, 12)]), VADD(T2i, T2h), ms, &(x[0]));
|
Chris@10
|
453 T2g = VADD(T2c, T2f);
|
Chris@10
|
454 ST(&(x[WS(rs, 4)]), VADD(T29, T2g), ms, &(x[0]));
|
Chris@10
|
455 ST(&(x[WS(rs, 16)]), VSUB(T2g, T29), ms, &(x[0]));
|
Chris@10
|
456 }
|
Chris@10
|
457 {
|
Chris@10
|
458 V T1Z, T1X, T1Y, T1R, T22, T1J, T1Q, T21, T20;
|
Chris@10
|
459 T1Z = VMUL(LDK(KP559016994), VSUB(T1V, T1W));
|
Chris@10
|
460 T1X = VADD(T1V, T1W);
|
Chris@10
|
461 T1Y = VFNMS(LDK(KP250000000), T1X, T1U);
|
Chris@10
|
462 T1J = VSUB(T1F, T1I);
|
Chris@10
|
463 T1Q = VSUB(T1M, T1P);
|
Chris@10
|
464 T1R = VBYI(VFNMS(LDK(KP587785252), T1Q, VMUL(LDK(KP951056516), T1J)));
|
Chris@10
|
465 T22 = VBYI(VFMA(LDK(KP951056516), T1Q, VMUL(LDK(KP587785252), T1J)));
|
Chris@10
|
466 ST(&(x[WS(rs, 10)]), VADD(T1U, T1X), ms, &(x[0]));
|
Chris@10
|
467 T21 = VADD(T1Z, T1Y);
|
Chris@10
|
468 ST(&(x[WS(rs, 6)]), VSUB(T21, T22), ms, &(x[0]));
|
Chris@10
|
469 ST(&(x[WS(rs, 14)]), VADD(T22, T21), ms, &(x[0]));
|
Chris@10
|
470 T20 = VSUB(T1Y, T1Z);
|
Chris@10
|
471 ST(&(x[WS(rs, 2)]), VADD(T1R, T20), ms, &(x[0]));
|
Chris@10
|
472 ST(&(x[WS(rs, 18)]), VSUB(T20, T1R), ms, &(x[0]));
|
Chris@10
|
473 }
|
Chris@10
|
474 {
|
Chris@10
|
475 V T1k, T1r, T1z, T1w, T1o, T1y, T1h, T1v;
|
Chris@10
|
476 T1k = VFMA(LDK(KP951056516), T1i, VMUL(LDK(KP587785252), T1j));
|
Chris@10
|
477 T1r = VFMA(LDK(KP951056516), T1p, VMUL(LDK(KP587785252), T1q));
|
Chris@10
|
478 T1z = VFNMS(LDK(KP587785252), T1p, VMUL(LDK(KP951056516), T1q));
|
Chris@10
|
479 T1w = VFNMS(LDK(KP587785252), T1i, VMUL(LDK(KP951056516), T1j));
|
Chris@10
|
480 {
|
Chris@10
|
481 V T1m, T1n, T1f, T1g;
|
Chris@10
|
482 T1m = VFMS(LDK(KP250000000), T1d, TM);
|
Chris@10
|
483 T1n = VMUL(LDK(KP559016994), VSUB(T1c, TY));
|
Chris@10
|
484 T1o = VADD(T1m, T1n);
|
Chris@10
|
485 T1y = VSUB(T1n, T1m);
|
Chris@10
|
486 T1f = VMUL(LDK(KP559016994), VSUB(Tp, TE));
|
Chris@10
|
487 T1g = VFNMS(LDK(KP250000000), TF, T7);
|
Chris@10
|
488 T1h = VADD(T1f, T1g);
|
Chris@10
|
489 T1v = VSUB(T1g, T1f);
|
Chris@10
|
490 }
|
Chris@10
|
491 {
|
Chris@10
|
492 V T1l, T1s, T1B, T1C;
|
Chris@10
|
493 T1l = VADD(T1h, T1k);
|
Chris@10
|
494 T1s = VBYI(VSUB(T1o, T1r));
|
Chris@10
|
495 ST(&(x[WS(rs, 19)]), VSUB(T1l, T1s), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
496 ST(&(x[WS(rs, 1)]), VADD(T1l, T1s), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
497 T1B = VADD(T1v, T1w);
|
Chris@10
|
498 T1C = VBYI(VADD(T1z, T1y));
|
Chris@10
|
499 ST(&(x[WS(rs, 13)]), VSUB(T1B, T1C), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
500 ST(&(x[WS(rs, 7)]), VADD(T1B, T1C), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
501 }
|
Chris@10
|
502 {
|
Chris@10
|
503 V T1t, T1u, T1x, T1A;
|
Chris@10
|
504 T1t = VSUB(T1h, T1k);
|
Chris@10
|
505 T1u = VBYI(VADD(T1r, T1o));
|
Chris@10
|
506 ST(&(x[WS(rs, 11)]), VSUB(T1t, T1u), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
507 ST(&(x[WS(rs, 9)]), VADD(T1t, T1u), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
508 T1x = VSUB(T1v, T1w);
|
Chris@10
|
509 T1A = VBYI(VSUB(T1y, T1z));
|
Chris@10
|
510 ST(&(x[WS(rs, 17)]), VSUB(T1x, T1A), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
511 ST(&(x[WS(rs, 3)]), VADD(T1x, T1A), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
512 }
|
Chris@10
|
513 }
|
Chris@10
|
514 }
|
Chris@10
|
515 }
|
Chris@10
|
516 }
|
Chris@10
|
517 VLEAVE();
|
Chris@10
|
518 }
|
Chris@10
|
519
|
Chris@10
|
520 static const tw_instr twinstr[] = {
|
Chris@10
|
521 VTW(0, 1),
|
Chris@10
|
522 VTW(0, 3),
|
Chris@10
|
523 VTW(0, 9),
|
Chris@10
|
524 VTW(0, 19),
|
Chris@10
|
525 {TW_NEXT, VL, 0}
|
Chris@10
|
526 };
|
Chris@10
|
527
|
Chris@10
|
528 static const ct_desc desc = { 20, XSIMD_STRING("t3fv_20"), twinstr, &GENUS, {126, 80, 12, 0}, 0, 0, 0 };
|
Chris@10
|
529
|
Chris@10
|
530 void XSIMD(codelet_t3fv_20) (planner *p) {
|
Chris@10
|
531 X(kdft_dit_register) (p, t3fv_20, &desc);
|
Chris@10
|
532 }
|
Chris@10
|
533 #endif /* HAVE_FMA */
|