annotate src/fftw-3.3.3/dft/simd/common/t3fv_16.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:38:49 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3fv_16 -include t3f.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 98 FP additions, 86 FP multiplications,
Chris@10 32 * (or, 64 additions, 52 multiplications, 34 fused multiply/add),
Chris@10 33 * 70 stack variables, 3 constants, and 32 memory accesses
Chris@10 34 */
Chris@10 35 #include "t3f.h"
Chris@10 36
Chris@10 37 static void t3fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
Chris@10 40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
Chris@10 41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 42 {
Chris@10 43 INT m;
Chris@10 44 R *x;
Chris@10 45 x = ri;
Chris@10 46 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 47 V T13, Tg, TY, T14, T1A, T1q, T1f, T1x, T1r, T1i, Tt, T16, TB, T1j, T1k;
Chris@10 48 V TH;
Chris@10 49 {
Chris@10 50 V T2, T8, Tu, T3;
Chris@10 51 T2 = LDW(&(W[0]));
Chris@10 52 T8 = LDW(&(W[TWVL * 2]));
Chris@10 53 Tu = LDW(&(W[TWVL * 6]));
Chris@10 54 T3 = LDW(&(W[TWVL * 4]));
Chris@10 55 {
Chris@10 56 V Ty, T1o, Tf, T1b, T7, Tr, TR, TX, T1g, Tl, To, Tw, TG, Tz, T1p;
Chris@10 57 V T1e, TC;
Chris@10 58 {
Chris@10 59 V T1, T5, Ta, Td;
Chris@10 60 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 61 T5 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@10 62 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 63 Td = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
Chris@10 64 {
Chris@10 65 V Tx, TO, TE, Tb, Tm, Tp, TN, Te, T6, TW, TP, TS;
Chris@10 66 {
Chris@10 67 V TM, T9, TL, Tc, TU, T4, TV;
Chris@10 68 TM = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
Chris@10 69 Tx = VZMULJ(T2, T8);
Chris@10 70 T9 = VZMUL(T2, T8);
Chris@10 71 TL = VZMULJ(T2, Tu);
Chris@10 72 TO = VZMULJ(T8, T3);
Chris@10 73 Tc = VZMUL(T8, T3);
Chris@10 74 TU = VZMUL(T2, T3);
Chris@10 75 T4 = VZMULJ(T2, T3);
Chris@10 76 TV = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
Chris@10 77 TE = VZMUL(Tx, T3);
Chris@10 78 Ty = VZMULJ(Tx, T3);
Chris@10 79 Tb = VZMULJ(T9, Ta);
Chris@10 80 Tm = VZMULJ(T9, T3);
Chris@10 81 Tp = VZMUL(T9, T3);
Chris@10 82 TN = VZMULJ(TL, TM);
Chris@10 83 Te = VZMULJ(Tc, Td);
Chris@10 84 T6 = VZMULJ(T4, T5);
Chris@10 85 TW = VZMULJ(TU, TV);
Chris@10 86 }
Chris@10 87 TP = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 88 TS = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 89 {
Chris@10 90 V TQ, TT, Ti, Tk, Tn, Th, Tq, Tj;
Chris@10 91 Th = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 92 Tq = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
Chris@10 93 Tj = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Chris@10 94 T1o = VSUB(Tb, Te);
Chris@10 95 Tf = VADD(Tb, Te);
Chris@10 96 T1b = VSUB(T1, T6);
Chris@10 97 T7 = VADD(T1, T6);
Chris@10 98 TQ = VZMULJ(TO, TP);
Chris@10 99 TT = VZMULJ(Tx, TS);
Chris@10 100 Ti = VZMULJ(T2, Th);
Chris@10 101 Tr = VZMULJ(Tp, Tq);
Chris@10 102 Tk = VZMULJ(T3, Tj);
Chris@10 103 Tn = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 104 {
Chris@10 105 V T1d, T1c, Tv, TF;
Chris@10 106 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
Chris@10 107 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
Chris@10 108 T1d = VSUB(TN, TQ);
Chris@10 109 TR = VADD(TN, TQ);
Chris@10 110 T1c = VSUB(TT, TW);
Chris@10 111 TX = VADD(TT, TW);
Chris@10 112 T1g = VSUB(Ti, Tk);
Chris@10 113 Tl = VADD(Ti, Tk);
Chris@10 114 To = VZMULJ(Tm, Tn);
Chris@10 115 Tw = VZMULJ(Tu, Tv);
Chris@10 116 TG = VZMULJ(TE, TF);
Chris@10 117 Tz = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@10 118 T1p = VSUB(T1d, T1c);
Chris@10 119 T1e = VADD(T1c, T1d);
Chris@10 120 TC = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 121 }
Chris@10 122 }
Chris@10 123 }
Chris@10 124 }
Chris@10 125 {
Chris@10 126 V T1h, Ts, TA, TD;
Chris@10 127 T13 = VADD(T7, Tf);
Chris@10 128 Tg = VSUB(T7, Tf);
Chris@10 129 T1h = VSUB(To, Tr);
Chris@10 130 Ts = VADD(To, Tr);
Chris@10 131 TY = VSUB(TR, TX);
Chris@10 132 T14 = VADD(TX, TR);
Chris@10 133 TA = VZMULJ(Ty, Tz);
Chris@10 134 T1A = VFMA(LDK(KP707106781), T1p, T1o);
Chris@10 135 T1q = VFNMS(LDK(KP707106781), T1p, T1o);
Chris@10 136 T1f = VFMA(LDK(KP707106781), T1e, T1b);
Chris@10 137 T1x = VFNMS(LDK(KP707106781), T1e, T1b);
Chris@10 138 TD = VZMULJ(T8, TC);
Chris@10 139 T1r = VFMA(LDK(KP414213562), T1g, T1h);
Chris@10 140 T1i = VFNMS(LDK(KP414213562), T1h, T1g);
Chris@10 141 Tt = VSUB(Tl, Ts);
Chris@10 142 T16 = VADD(Tl, Ts);
Chris@10 143 TB = VADD(Tw, TA);
Chris@10 144 T1j = VSUB(Tw, TA);
Chris@10 145 T1k = VSUB(TG, TD);
Chris@10 146 TH = VADD(TD, TG);
Chris@10 147 }
Chris@10 148 }
Chris@10 149 }
Chris@10 150 {
Chris@10 151 V T15, T19, T1l, T1s, TI, T17;
Chris@10 152 T15 = VADD(T13, T14);
Chris@10 153 T19 = VSUB(T13, T14);
Chris@10 154 T1l = VFNMS(LDK(KP414213562), T1k, T1j);
Chris@10 155 T1s = VFMA(LDK(KP414213562), T1j, T1k);
Chris@10 156 TI = VSUB(TB, TH);
Chris@10 157 T17 = VADD(TB, TH);
Chris@10 158 {
Chris@10 159 V T1y, T1t, T1B, T1m;
Chris@10 160 T1y = VADD(T1r, T1s);
Chris@10 161 T1t = VSUB(T1r, T1s);
Chris@10 162 T1B = VSUB(T1l, T1i);
Chris@10 163 T1m = VADD(T1i, T1l);
Chris@10 164 {
Chris@10 165 V T18, T1a, TJ, TZ;
Chris@10 166 T18 = VADD(T16, T17);
Chris@10 167 T1a = VSUB(T17, T16);
Chris@10 168 TJ = VADD(Tt, TI);
Chris@10 169 TZ = VSUB(TI, Tt);
Chris@10 170 {
Chris@10 171 V T1u, T1w, T1z, T1D;
Chris@10 172 T1u = VFNMS(LDK(KP923879532), T1t, T1q);
Chris@10 173 T1w = VFMA(LDK(KP923879532), T1t, T1q);
Chris@10 174 T1z = VFNMS(LDK(KP923879532), T1y, T1x);
Chris@10 175 T1D = VFMA(LDK(KP923879532), T1y, T1x);
Chris@10 176 {
Chris@10 177 V T1n, T1v, T1C, T1E;
Chris@10 178 T1n = VFNMS(LDK(KP923879532), T1m, T1f);
Chris@10 179 T1v = VFMA(LDK(KP923879532), T1m, T1f);
Chris@10 180 T1C = VFNMS(LDK(KP923879532), T1B, T1A);
Chris@10 181 T1E = VFMA(LDK(KP923879532), T1B, T1A);
Chris@10 182 ST(&(x[WS(rs, 12)]), VFNMSI(T1a, T19), ms, &(x[0]));
Chris@10 183 ST(&(x[WS(rs, 4)]), VFMAI(T1a, T19), ms, &(x[0]));
Chris@10 184 ST(&(x[0]), VADD(T15, T18), ms, &(x[0]));
Chris@10 185 ST(&(x[WS(rs, 8)]), VSUB(T15, T18), ms, &(x[0]));
Chris@10 186 {
Chris@10 187 V T10, T12, TK, T11;
Chris@10 188 T10 = VFNMS(LDK(KP707106781), TZ, TY);
Chris@10 189 T12 = VFMA(LDK(KP707106781), TZ, TY);
Chris@10 190 TK = VFNMS(LDK(KP707106781), TJ, Tg);
Chris@10 191 T11 = VFMA(LDK(KP707106781), TJ, Tg);
Chris@10 192 ST(&(x[WS(rs, 1)]), VFNMSI(T1w, T1v), ms, &(x[WS(rs, 1)]));
Chris@10 193 ST(&(x[WS(rs, 15)]), VFMAI(T1w, T1v), ms, &(x[WS(rs, 1)]));
Chris@10 194 ST(&(x[WS(rs, 7)]), VFMAI(T1u, T1n), ms, &(x[WS(rs, 1)]));
Chris@10 195 ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1n), ms, &(x[WS(rs, 1)]));
Chris@10 196 ST(&(x[WS(rs, 3)]), VFMAI(T1E, T1D), ms, &(x[WS(rs, 1)]));
Chris@10 197 ST(&(x[WS(rs, 13)]), VFNMSI(T1E, T1D), ms, &(x[WS(rs, 1)]));
Chris@10 198 ST(&(x[WS(rs, 11)]), VFMAI(T1C, T1z), ms, &(x[WS(rs, 1)]));
Chris@10 199 ST(&(x[WS(rs, 5)]), VFNMSI(T1C, T1z), ms, &(x[WS(rs, 1)]));
Chris@10 200 ST(&(x[WS(rs, 14)]), VFNMSI(T12, T11), ms, &(x[0]));
Chris@10 201 ST(&(x[WS(rs, 2)]), VFMAI(T12, T11), ms, &(x[0]));
Chris@10 202 ST(&(x[WS(rs, 10)]), VFMAI(T10, TK), ms, &(x[0]));
Chris@10 203 ST(&(x[WS(rs, 6)]), VFNMSI(T10, TK), ms, &(x[0]));
Chris@10 204 }
Chris@10 205 }
Chris@10 206 }
Chris@10 207 }
Chris@10 208 }
Chris@10 209 }
Chris@10 210 }
Chris@10 211 }
Chris@10 212 VLEAVE();
Chris@10 213 }
Chris@10 214
Chris@10 215 static const tw_instr twinstr[] = {
Chris@10 216 VTW(0, 1),
Chris@10 217 VTW(0, 3),
Chris@10 218 VTW(0, 9),
Chris@10 219 VTW(0, 15),
Chris@10 220 {TW_NEXT, VL, 0}
Chris@10 221 };
Chris@10 222
Chris@10 223 static const ct_desc desc = { 16, XSIMD_STRING("t3fv_16"), twinstr, &GENUS, {64, 52, 34, 0}, 0, 0, 0 };
Chris@10 224
Chris@10 225 void XSIMD(codelet_t3fv_16) (planner *p) {
Chris@10 226 X(kdft_dit_register) (p, t3fv_16, &desc);
Chris@10 227 }
Chris@10 228 #else /* HAVE_FMA */
Chris@10 229
Chris@10 230 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3fv_16 -include t3f.h */
Chris@10 231
Chris@10 232 /*
Chris@10 233 * This function contains 98 FP additions, 64 FP multiplications,
Chris@10 234 * (or, 94 additions, 60 multiplications, 4 fused multiply/add),
Chris@10 235 * 51 stack variables, 3 constants, and 32 memory accesses
Chris@10 236 */
Chris@10 237 #include "t3f.h"
Chris@10 238
Chris@10 239 static void t3fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 240 {
Chris@10 241 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
Chris@10 242 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
Chris@10 243 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 244 {
Chris@10 245 INT m;
Chris@10 246 R *x;
Chris@10 247 x = ri;
Chris@10 248 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 249 V T4, T5, T6, To, T1, Ty, T7, T8, TO, TV, Te, Tp, TB, TH, Ts;
Chris@10 250 T4 = LDW(&(W[0]));
Chris@10 251 T5 = LDW(&(W[TWVL * 2]));
Chris@10 252 T6 = VZMULJ(T4, T5);
Chris@10 253 To = VZMUL(T4, T5);
Chris@10 254 T1 = LDW(&(W[TWVL * 6]));
Chris@10 255 Ty = VZMULJ(T4, T1);
Chris@10 256 T7 = LDW(&(W[TWVL * 4]));
Chris@10 257 T8 = VZMULJ(T6, T7);
Chris@10 258 TO = VZMUL(T5, T7);
Chris@10 259 TV = VZMULJ(T4, T7);
Chris@10 260 Te = VZMUL(T6, T7);
Chris@10 261 Tp = VZMULJ(To, T7);
Chris@10 262 TB = VZMULJ(T5, T7);
Chris@10 263 TH = VZMUL(T4, T7);
Chris@10 264 Ts = VZMUL(To, T7);
Chris@10 265 {
Chris@10 266 V TY, T1f, TR, T1g, T1q, T1r, TL, TZ, T1l, T1m, T1n, Ti, T12, T1i, T1j;
Chris@10 267 V T1k, Tw, T11, TU, TX, TW;
Chris@10 268 TU = LD(&(x[0]), ms, &(x[0]));
Chris@10 269 TW = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@10 270 TX = VZMULJ(TV, TW);
Chris@10 271 TY = VSUB(TU, TX);
Chris@10 272 T1f = VADD(TU, TX);
Chris@10 273 {
Chris@10 274 V TN, TQ, TM, TP;
Chris@10 275 TM = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 276 TN = VZMULJ(To, TM);
Chris@10 277 TP = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
Chris@10 278 TQ = VZMULJ(TO, TP);
Chris@10 279 TR = VSUB(TN, TQ);
Chris@10 280 T1g = VADD(TN, TQ);
Chris@10 281 }
Chris@10 282 {
Chris@10 283 V TA, TJ, TD, TG, TE, TK;
Chris@10 284 {
Chris@10 285 V Tz, TI, TC, TF;
Chris@10 286 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
Chris@10 287 TA = VZMULJ(Ty, Tz);
Chris@10 288 TI = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
Chris@10 289 TJ = VZMULJ(TH, TI);
Chris@10 290 TC = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 291 TD = VZMULJ(TB, TC);
Chris@10 292 TF = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 293 TG = VZMULJ(T6, TF);
Chris@10 294 }
Chris@10 295 T1q = VADD(TA, TD);
Chris@10 296 T1r = VADD(TG, TJ);
Chris@10 297 TE = VSUB(TA, TD);
Chris@10 298 TK = VSUB(TG, TJ);
Chris@10 299 TL = VMUL(LDK(KP707106781), VSUB(TE, TK));
Chris@10 300 TZ = VMUL(LDK(KP707106781), VADD(TK, TE));
Chris@10 301 }
Chris@10 302 {
Chris@10 303 V T3, Tg, Ta, Td, Tb, Th;
Chris@10 304 {
Chris@10 305 V T2, Tf, T9, Tc;
Chris@10 306 T2 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
Chris@10 307 T3 = VZMULJ(T1, T2);
Chris@10 308 Tf = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
Chris@10 309 Tg = VZMULJ(Te, Tf);
Chris@10 310 T9 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@10 311 Ta = VZMULJ(T8, T9);
Chris@10 312 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 313 Td = VZMULJ(T5, Tc);
Chris@10 314 }
Chris@10 315 T1l = VADD(T3, Ta);
Chris@10 316 T1m = VADD(Td, Tg);
Chris@10 317 T1n = VSUB(T1l, T1m);
Chris@10 318 Tb = VSUB(T3, Ta);
Chris@10 319 Th = VSUB(Td, Tg);
Chris@10 320 Ti = VFNMS(LDK(KP923879532), Th, VMUL(LDK(KP382683432), Tb));
Chris@10 321 T12 = VFMA(LDK(KP923879532), Tb, VMUL(LDK(KP382683432), Th));
Chris@10 322 }
Chris@10 323 {
Chris@10 324 V Tk, Tu, Tm, Tr, Tn, Tv;
Chris@10 325 {
Chris@10 326 V Tj, Tt, Tl, Tq;
Chris@10 327 Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 328 Tk = VZMULJ(T4, Tj);
Chris@10 329 Tt = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
Chris@10 330 Tu = VZMULJ(Ts, Tt);
Chris@10 331 Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Chris@10 332 Tm = VZMULJ(T7, Tl);
Chris@10 333 Tq = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 334 Tr = VZMULJ(Tp, Tq);
Chris@10 335 }
Chris@10 336 T1i = VADD(Tk, Tm);
Chris@10 337 T1j = VADD(Tr, Tu);
Chris@10 338 T1k = VSUB(T1i, T1j);
Chris@10 339 Tn = VSUB(Tk, Tm);
Chris@10 340 Tv = VSUB(Tr, Tu);
Chris@10 341 Tw = VFMA(LDK(KP382683432), Tn, VMUL(LDK(KP923879532), Tv));
Chris@10 342 T11 = VFNMS(LDK(KP382683432), Tv, VMUL(LDK(KP923879532), Tn));
Chris@10 343 }
Chris@10 344 {
Chris@10 345 V T1p, T1v, T1u, T1w;
Chris@10 346 {
Chris@10 347 V T1h, T1o, T1s, T1t;
Chris@10 348 T1h = VSUB(T1f, T1g);
Chris@10 349 T1o = VMUL(LDK(KP707106781), VADD(T1k, T1n));
Chris@10 350 T1p = VADD(T1h, T1o);
Chris@10 351 T1v = VSUB(T1h, T1o);
Chris@10 352 T1s = VSUB(T1q, T1r);
Chris@10 353 T1t = VMUL(LDK(KP707106781), VSUB(T1n, T1k));
Chris@10 354 T1u = VBYI(VADD(T1s, T1t));
Chris@10 355 T1w = VBYI(VSUB(T1t, T1s));
Chris@10 356 }
Chris@10 357 ST(&(x[WS(rs, 14)]), VSUB(T1p, T1u), ms, &(x[0]));
Chris@10 358 ST(&(x[WS(rs, 6)]), VADD(T1v, T1w), ms, &(x[0]));
Chris@10 359 ST(&(x[WS(rs, 2)]), VADD(T1p, T1u), ms, &(x[0]));
Chris@10 360 ST(&(x[WS(rs, 10)]), VSUB(T1v, T1w), ms, &(x[0]));
Chris@10 361 }
Chris@10 362 {
Chris@10 363 V T1z, T1D, T1C, T1E;
Chris@10 364 {
Chris@10 365 V T1x, T1y, T1A, T1B;
Chris@10 366 T1x = VADD(T1f, T1g);
Chris@10 367 T1y = VADD(T1r, T1q);
Chris@10 368 T1z = VADD(T1x, T1y);
Chris@10 369 T1D = VSUB(T1x, T1y);
Chris@10 370 T1A = VADD(T1i, T1j);
Chris@10 371 T1B = VADD(T1l, T1m);
Chris@10 372 T1C = VADD(T1A, T1B);
Chris@10 373 T1E = VBYI(VSUB(T1B, T1A));
Chris@10 374 }
Chris@10 375 ST(&(x[WS(rs, 8)]), VSUB(T1z, T1C), ms, &(x[0]));
Chris@10 376 ST(&(x[WS(rs, 4)]), VADD(T1D, T1E), ms, &(x[0]));
Chris@10 377 ST(&(x[0]), VADD(T1z, T1C), ms, &(x[0]));
Chris@10 378 ST(&(x[WS(rs, 12)]), VSUB(T1D, T1E), ms, &(x[0]));
Chris@10 379 }
Chris@10 380 {
Chris@10 381 V TT, T15, T14, T16;
Chris@10 382 {
Chris@10 383 V Tx, TS, T10, T13;
Chris@10 384 Tx = VSUB(Ti, Tw);
Chris@10 385 TS = VSUB(TL, TR);
Chris@10 386 TT = VBYI(VSUB(Tx, TS));
Chris@10 387 T15 = VBYI(VADD(TS, Tx));
Chris@10 388 T10 = VADD(TY, TZ);
Chris@10 389 T13 = VADD(T11, T12);
Chris@10 390 T14 = VSUB(T10, T13);
Chris@10 391 T16 = VADD(T10, T13);
Chris@10 392 }
Chris@10 393 ST(&(x[WS(rs, 7)]), VADD(TT, T14), ms, &(x[WS(rs, 1)]));
Chris@10 394 ST(&(x[WS(rs, 15)]), VSUB(T16, T15), ms, &(x[WS(rs, 1)]));
Chris@10 395 ST(&(x[WS(rs, 9)]), VSUB(T14, TT), ms, &(x[WS(rs, 1)]));
Chris@10 396 ST(&(x[WS(rs, 1)]), VADD(T15, T16), ms, &(x[WS(rs, 1)]));
Chris@10 397 }
Chris@10 398 {
Chris@10 399 V T19, T1d, T1c, T1e;
Chris@10 400 {
Chris@10 401 V T17, T18, T1a, T1b;
Chris@10 402 T17 = VSUB(TY, TZ);
Chris@10 403 T18 = VADD(Tw, Ti);
Chris@10 404 T19 = VADD(T17, T18);
Chris@10 405 T1d = VSUB(T17, T18);
Chris@10 406 T1a = VADD(TR, TL);
Chris@10 407 T1b = VSUB(T12, T11);
Chris@10 408 T1c = VBYI(VADD(T1a, T1b));
Chris@10 409 T1e = VBYI(VSUB(T1b, T1a));
Chris@10 410 }
Chris@10 411 ST(&(x[WS(rs, 13)]), VSUB(T19, T1c), ms, &(x[WS(rs, 1)]));
Chris@10 412 ST(&(x[WS(rs, 5)]), VADD(T1d, T1e), ms, &(x[WS(rs, 1)]));
Chris@10 413 ST(&(x[WS(rs, 3)]), VADD(T19, T1c), ms, &(x[WS(rs, 1)]));
Chris@10 414 ST(&(x[WS(rs, 11)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)]));
Chris@10 415 }
Chris@10 416 }
Chris@10 417 }
Chris@10 418 }
Chris@10 419 VLEAVE();
Chris@10 420 }
Chris@10 421
Chris@10 422 static const tw_instr twinstr[] = {
Chris@10 423 VTW(0, 1),
Chris@10 424 VTW(0, 3),
Chris@10 425 VTW(0, 9),
Chris@10 426 VTW(0, 15),
Chris@10 427 {TW_NEXT, VL, 0}
Chris@10 428 };
Chris@10 429
Chris@10 430 static const ct_desc desc = { 16, XSIMD_STRING("t3fv_16"), twinstr, &GENUS, {94, 60, 4, 0}, 0, 0, 0 };
Chris@10 431
Chris@10 432 void XSIMD(codelet_t3fv_16) (planner *p) {
Chris@10 433 X(kdft_dit_register) (p, t3fv_16, &desc);
Chris@10 434 }
Chris@10 435 #endif /* HAVE_FMA */