annotate src/fftw-3.3.3/dft/simd/common/t3bv_8.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:39:18 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include t3b.h -sign 1 */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 37 FP additions, 32 FP multiplications,
Chris@10 32 * (or, 27 additions, 22 multiplications, 10 fused multiply/add),
Chris@10 33 * 43 stack variables, 1 constants, and 16 memory accesses
Chris@10 34 */
Chris@10 35 #include "t3b.h"
Chris@10 36
Chris@10 37 static void t3bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 40 {
Chris@10 41 INT m;
Chris@10 42 R *x;
Chris@10 43 x = ii;
Chris@10 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@10 45 V T2, T3, Tb, T1, T5, Tn, Tq, T8, Td, T4, Ta, Tp, Tg, Ti, T9;
Chris@10 46 T2 = LDW(&(W[0]));
Chris@10 47 T3 = LDW(&(W[TWVL * 2]));
Chris@10 48 Tb = LDW(&(W[TWVL * 4]));
Chris@10 49 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 50 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 51 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 52 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 53 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 54 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 55 T4 = VZMUL(T2, T3);
Chris@10 56 Ta = VZMULJ(T2, T3);
Chris@10 57 Tp = VZMULJ(T2, Tb);
Chris@10 58 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@10 59 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 60 T9 = VZMUL(T2, T8);
Chris@10 61 {
Chris@10 62 V T6, To, Tc, Tr, Th, Tj;
Chris@10 63 T6 = VZMUL(T4, T5);
Chris@10 64 To = VZMUL(Ta, Tn);
Chris@10 65 Tc = VZMULJ(Ta, Tb);
Chris@10 66 Tr = VZMUL(Tp, Tq);
Chris@10 67 Th = VZMUL(Tb, Tg);
Chris@10 68 Tj = VZMUL(T3, Ti);
Chris@10 69 {
Chris@10 70 V Tx, T7, Te, Ts, Ty, Tk, TB;
Chris@10 71 Tx = VADD(T1, T6);
Chris@10 72 T7 = VSUB(T1, T6);
Chris@10 73 Te = VZMUL(Tc, Td);
Chris@10 74 Ts = VSUB(To, Tr);
Chris@10 75 Ty = VADD(To, Tr);
Chris@10 76 Tk = VSUB(Th, Tj);
Chris@10 77 TB = VADD(Th, Tj);
Chris@10 78 {
Chris@10 79 V Tf, TA, Tz, TD;
Chris@10 80 Tf = VSUB(T9, Te);
Chris@10 81 TA = VADD(T9, Te);
Chris@10 82 Tz = VSUB(Tx, Ty);
Chris@10 83 TD = VADD(Tx, Ty);
Chris@10 84 {
Chris@10 85 V TC, TE, Tl, Tt;
Chris@10 86 TC = VSUB(TA, TB);
Chris@10 87 TE = VADD(TA, TB);
Chris@10 88 Tl = VADD(Tf, Tk);
Chris@10 89 Tt = VSUB(Tf, Tk);
Chris@10 90 {
Chris@10 91 V Tu, Tw, Tm, Tv;
Chris@10 92 ST(&(x[0]), VADD(TD, TE), ms, &(x[0]));
Chris@10 93 ST(&(x[WS(rs, 4)]), VSUB(TD, TE), ms, &(x[0]));
Chris@10 94 ST(&(x[WS(rs, 2)]), VFMAI(TC, Tz), ms, &(x[0]));
Chris@10 95 ST(&(x[WS(rs, 6)]), VFNMSI(TC, Tz), ms, &(x[0]));
Chris@10 96 Tu = VFNMS(LDK(KP707106781), Tt, Ts);
Chris@10 97 Tw = VFMA(LDK(KP707106781), Tt, Ts);
Chris@10 98 Tm = VFNMS(LDK(KP707106781), Tl, T7);
Chris@10 99 Tv = VFMA(LDK(KP707106781), Tl, T7);
Chris@10 100 ST(&(x[WS(rs, 1)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@10 101 ST(&(x[WS(rs, 7)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@10 102 ST(&(x[WS(rs, 5)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)]));
Chris@10 103 ST(&(x[WS(rs, 3)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)]));
Chris@10 104 }
Chris@10 105 }
Chris@10 106 }
Chris@10 107 }
Chris@10 108 }
Chris@10 109 }
Chris@10 110 }
Chris@10 111 VLEAVE();
Chris@10 112 }
Chris@10 113
Chris@10 114 static const tw_instr twinstr[] = {
Chris@10 115 VTW(0, 1),
Chris@10 116 VTW(0, 3),
Chris@10 117 VTW(0, 7),
Chris@10 118 {TW_NEXT, VL, 0}
Chris@10 119 };
Chris@10 120
Chris@10 121 static const ct_desc desc = { 8, XSIMD_STRING("t3bv_8"), twinstr, &GENUS, {27, 22, 10, 0}, 0, 0, 0 };
Chris@10 122
Chris@10 123 void XSIMD(codelet_t3bv_8) (planner *p) {
Chris@10 124 X(kdft_dit_register) (p, t3bv_8, &desc);
Chris@10 125 }
Chris@10 126 #else /* HAVE_FMA */
Chris@10 127
Chris@10 128 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include t3b.h -sign 1 */
Chris@10 129
Chris@10 130 /*
Chris@10 131 * This function contains 37 FP additions, 24 FP multiplications,
Chris@10 132 * (or, 37 additions, 24 multiplications, 0 fused multiply/add),
Chris@10 133 * 31 stack variables, 1 constants, and 16 memory accesses
Chris@10 134 */
Chris@10 135 #include "t3b.h"
Chris@10 136
Chris@10 137 static void t3bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 138 {
Chris@10 139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 140 {
Chris@10 141 INT m;
Chris@10 142 R *x;
Chris@10 143 x = ii;
Chris@10 144 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@10 145 V T1, T4, T5, Tp, T6, T7, Tj;
Chris@10 146 T1 = LDW(&(W[0]));
Chris@10 147 T4 = LDW(&(W[TWVL * 2]));
Chris@10 148 T5 = VZMULJ(T1, T4);
Chris@10 149 Tp = VZMUL(T1, T4);
Chris@10 150 T6 = LDW(&(W[TWVL * 4]));
Chris@10 151 T7 = VZMULJ(T5, T6);
Chris@10 152 Tj = VZMULJ(T1, T6);
Chris@10 153 {
Chris@10 154 V Ts, Tx, Tm, Ty, Ta, TA, Tf, TB, To, Tr, Tq;
Chris@10 155 To = LD(&(x[0]), ms, &(x[0]));
Chris@10 156 Tq = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 157 Tr = VZMUL(Tp, Tq);
Chris@10 158 Ts = VSUB(To, Tr);
Chris@10 159 Tx = VADD(To, Tr);
Chris@10 160 {
Chris@10 161 V Ti, Tl, Th, Tk;
Chris@10 162 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 163 Ti = VZMUL(T5, Th);
Chris@10 164 Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 165 Tl = VZMUL(Tj, Tk);
Chris@10 166 Tm = VSUB(Ti, Tl);
Chris@10 167 Ty = VADD(Ti, Tl);
Chris@10 168 }
Chris@10 169 {
Chris@10 170 V T3, T9, T2, T8;
Chris@10 171 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 172 T3 = VZMUL(T1, T2);
Chris@10 173 T8 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 174 T9 = VZMUL(T7, T8);
Chris@10 175 Ta = VSUB(T3, T9);
Chris@10 176 TA = VADD(T3, T9);
Chris@10 177 }
Chris@10 178 {
Chris@10 179 V Tc, Te, Tb, Td;
Chris@10 180 Tb = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@10 181 Tc = VZMUL(T6, Tb);
Chris@10 182 Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 183 Te = VZMUL(T4, Td);
Chris@10 184 Tf = VSUB(Tc, Te);
Chris@10 185 TB = VADD(Tc, Te);
Chris@10 186 }
Chris@10 187 {
Chris@10 188 V Tz, TC, TD, TE;
Chris@10 189 Tz = VSUB(Tx, Ty);
Chris@10 190 TC = VBYI(VSUB(TA, TB));
Chris@10 191 ST(&(x[WS(rs, 6)]), VSUB(Tz, TC), ms, &(x[0]));
Chris@10 192 ST(&(x[WS(rs, 2)]), VADD(Tz, TC), ms, &(x[0]));
Chris@10 193 TD = VADD(Tx, Ty);
Chris@10 194 TE = VADD(TA, TB);
Chris@10 195 ST(&(x[WS(rs, 4)]), VSUB(TD, TE), ms, &(x[0]));
Chris@10 196 ST(&(x[0]), VADD(TD, TE), ms, &(x[0]));
Chris@10 197 {
Chris@10 198 V Tn, Tv, Tu, Tw, Tg, Tt;
Chris@10 199 Tg = VMUL(LDK(KP707106781), VSUB(Ta, Tf));
Chris@10 200 Tn = VBYI(VSUB(Tg, Tm));
Chris@10 201 Tv = VBYI(VADD(Tm, Tg));
Chris@10 202 Tt = VMUL(LDK(KP707106781), VADD(Ta, Tf));
Chris@10 203 Tu = VSUB(Ts, Tt);
Chris@10 204 Tw = VADD(Ts, Tt);
Chris@10 205 ST(&(x[WS(rs, 3)]), VADD(Tn, Tu), ms, &(x[WS(rs, 1)]));
Chris@10 206 ST(&(x[WS(rs, 7)]), VSUB(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@10 207 ST(&(x[WS(rs, 5)]), VSUB(Tu, Tn), ms, &(x[WS(rs, 1)]));
Chris@10 208 ST(&(x[WS(rs, 1)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
Chris@10 209 }
Chris@10 210 }
Chris@10 211 }
Chris@10 212 }
Chris@10 213 }
Chris@10 214 VLEAVE();
Chris@10 215 }
Chris@10 216
Chris@10 217 static const tw_instr twinstr[] = {
Chris@10 218 VTW(0, 1),
Chris@10 219 VTW(0, 3),
Chris@10 220 VTW(0, 7),
Chris@10 221 {TW_NEXT, VL, 0}
Chris@10 222 };
Chris@10 223
Chris@10 224 static const ct_desc desc = { 8, XSIMD_STRING("t3bv_8"), twinstr, &GENUS, {37, 24, 0, 0}, 0, 0, 0 };
Chris@10 225
Chris@10 226 void XSIMD(codelet_t3bv_8) (planner *p) {
Chris@10 227 X(kdft_dit_register) (p, t3bv_8, &desc);
Chris@10 228 }
Chris@10 229 #endif /* HAVE_FMA */