Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:39:18 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include t3b.h -sign 1 */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 98 FP additions, 86 FP multiplications,
|
Chris@10
|
32 * (or, 64 additions, 52 multiplications, 34 fused multiply/add),
|
Chris@10
|
33 * 70 stack variables, 3 constants, and 32 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "t3b.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
Chris@10
|
40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
|
Chris@10
|
41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
42 {
|
Chris@10
|
43 INT m;
|
Chris@10
|
44 R *x;
|
Chris@10
|
45 x = ii;
|
Chris@10
|
46 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
|
Chris@10
|
47 V T13, Tg, TY, T14, T1A, T1q, T1f, T1x, T1r, T1i, Tt, T16, TB, T1j, T1k;
|
Chris@10
|
48 V TH;
|
Chris@10
|
49 {
|
Chris@10
|
50 V T2, T8, Tu, T3;
|
Chris@10
|
51 T2 = LDW(&(W[0]));
|
Chris@10
|
52 T8 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
53 Tu = LDW(&(W[TWVL * 6]));
|
Chris@10
|
54 T3 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
55 {
|
Chris@10
|
56 V Ty, T1o, Tf, T1b, T7, Tr, TQ, TX, T1g, Tl, To, Tw, TG, Tz, T1p;
|
Chris@10
|
57 V T1e, TC;
|
Chris@10
|
58 {
|
Chris@10
|
59 V T1, T5, Ta, Td;
|
Chris@10
|
60 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
61 T5 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
62 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
63 Td = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
Chris@10
|
64 {
|
Chris@10
|
65 V TR, TN, TM, TE, Tb, Tp, Tm, Te, T6, TW, TO, TS;
|
Chris@10
|
66 {
|
Chris@10
|
67 V TL, Tx, T9, TU, Tc, T4, TV;
|
Chris@10
|
68 TL = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
69 Tx = VZMULJ(T2, T8);
|
Chris@10
|
70 T9 = VZMUL(T2, T8);
|
Chris@10
|
71 TR = VZMULJ(T2, Tu);
|
Chris@10
|
72 TU = VZMULJ(T8, T3);
|
Chris@10
|
73 Tc = VZMUL(T8, T3);
|
Chris@10
|
74 T4 = VZMULJ(T2, T3);
|
Chris@10
|
75 TN = VZMUL(T2, T3);
|
Chris@10
|
76 TV = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
77 TM = VZMUL(Tx, TL);
|
Chris@10
|
78 Ty = VZMULJ(Tx, T3);
|
Chris@10
|
79 TE = VZMUL(Tx, T3);
|
Chris@10
|
80 Tb = VZMUL(T9, Ta);
|
Chris@10
|
81 Tp = VZMUL(T9, T3);
|
Chris@10
|
82 Tm = VZMULJ(T9, T3);
|
Chris@10
|
83 Te = VZMUL(Tc, Td);
|
Chris@10
|
84 T6 = VZMUL(T4, T5);
|
Chris@10
|
85 TW = VZMUL(TU, TV);
|
Chris@10
|
86 }
|
Chris@10
|
87 TO = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
88 TS = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
Chris@10
|
89 {
|
Chris@10
|
90 V TP, TT, Ti, Tk, Tn, Th, Tq, Tj;
|
Chris@10
|
91 Th = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
92 Tq = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
93 Tj = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
94 T1o = VSUB(Tb, Te);
|
Chris@10
|
95 Tf = VADD(Tb, Te);
|
Chris@10
|
96 T1b = VSUB(T1, T6);
|
Chris@10
|
97 T7 = VADD(T1, T6);
|
Chris@10
|
98 TP = VZMUL(TN, TO);
|
Chris@10
|
99 TT = VZMUL(TR, TS);
|
Chris@10
|
100 Ti = VZMUL(T2, Th);
|
Chris@10
|
101 Tr = VZMUL(Tp, Tq);
|
Chris@10
|
102 Tk = VZMUL(T3, Tj);
|
Chris@10
|
103 Tn = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
104 {
|
Chris@10
|
105 V T1c, T1d, Tv, TF;
|
Chris@10
|
106 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
107 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
108 T1c = VSUB(TM, TP);
|
Chris@10
|
109 TQ = VADD(TM, TP);
|
Chris@10
|
110 T1d = VSUB(TT, TW);
|
Chris@10
|
111 TX = VADD(TT, TW);
|
Chris@10
|
112 T1g = VSUB(Ti, Tk);
|
Chris@10
|
113 Tl = VADD(Ti, Tk);
|
Chris@10
|
114 To = VZMUL(Tm, Tn);
|
Chris@10
|
115 Tw = VZMUL(Tu, Tv);
|
Chris@10
|
116 TG = VZMUL(TE, TF);
|
Chris@10
|
117 Tz = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
118 T1p = VSUB(T1c, T1d);
|
Chris@10
|
119 T1e = VADD(T1c, T1d);
|
Chris@10
|
120 TC = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
121 }
|
Chris@10
|
122 }
|
Chris@10
|
123 }
|
Chris@10
|
124 }
|
Chris@10
|
125 {
|
Chris@10
|
126 V T1h, Ts, TA, TD;
|
Chris@10
|
127 T13 = VADD(T7, Tf);
|
Chris@10
|
128 Tg = VSUB(T7, Tf);
|
Chris@10
|
129 T1h = VSUB(To, Tr);
|
Chris@10
|
130 Ts = VADD(To, Tr);
|
Chris@10
|
131 TY = VSUB(TQ, TX);
|
Chris@10
|
132 T14 = VADD(TQ, TX);
|
Chris@10
|
133 TA = VZMUL(Ty, Tz);
|
Chris@10
|
134 T1A = VFNMS(LDK(KP707106781), T1p, T1o);
|
Chris@10
|
135 T1q = VFMA(LDK(KP707106781), T1p, T1o);
|
Chris@10
|
136 T1f = VFMA(LDK(KP707106781), T1e, T1b);
|
Chris@10
|
137 T1x = VFNMS(LDK(KP707106781), T1e, T1b);
|
Chris@10
|
138 TD = VZMUL(T8, TC);
|
Chris@10
|
139 T1r = VFMA(LDK(KP414213562), T1g, T1h);
|
Chris@10
|
140 T1i = VFNMS(LDK(KP414213562), T1h, T1g);
|
Chris@10
|
141 Tt = VSUB(Tl, Ts);
|
Chris@10
|
142 T16 = VADD(Tl, Ts);
|
Chris@10
|
143 TB = VADD(Tw, TA);
|
Chris@10
|
144 T1j = VSUB(Tw, TA);
|
Chris@10
|
145 T1k = VSUB(TG, TD);
|
Chris@10
|
146 TH = VADD(TD, TG);
|
Chris@10
|
147 }
|
Chris@10
|
148 }
|
Chris@10
|
149 }
|
Chris@10
|
150 {
|
Chris@10
|
151 V T15, T19, T1l, T1s, TI, T17;
|
Chris@10
|
152 T15 = VSUB(T13, T14);
|
Chris@10
|
153 T19 = VADD(T13, T14);
|
Chris@10
|
154 T1l = VFNMS(LDK(KP414213562), T1k, T1j);
|
Chris@10
|
155 T1s = VFMA(LDK(KP414213562), T1j, T1k);
|
Chris@10
|
156 TI = VSUB(TB, TH);
|
Chris@10
|
157 T17 = VADD(TB, TH);
|
Chris@10
|
158 {
|
Chris@10
|
159 V T1y, T1t, T1B, T1m;
|
Chris@10
|
160 T1y = VADD(T1r, T1s);
|
Chris@10
|
161 T1t = VSUB(T1r, T1s);
|
Chris@10
|
162 T1B = VSUB(T1i, T1l);
|
Chris@10
|
163 T1m = VADD(T1i, T1l);
|
Chris@10
|
164 {
|
Chris@10
|
165 V T18, T1a, TJ, TZ;
|
Chris@10
|
166 T18 = VSUB(T16, T17);
|
Chris@10
|
167 T1a = VADD(T16, T17);
|
Chris@10
|
168 TJ = VADD(Tt, TI);
|
Chris@10
|
169 TZ = VSUB(Tt, TI);
|
Chris@10
|
170 {
|
Chris@10
|
171 V T1u, T1w, T1z, T1D;
|
Chris@10
|
172 T1u = VFNMS(LDK(KP923879532), T1t, T1q);
|
Chris@10
|
173 T1w = VFMA(LDK(KP923879532), T1t, T1q);
|
Chris@10
|
174 T1z = VFNMS(LDK(KP923879532), T1y, T1x);
|
Chris@10
|
175 T1D = VFMA(LDK(KP923879532), T1y, T1x);
|
Chris@10
|
176 {
|
Chris@10
|
177 V T1n, T1v, T1C, T1E;
|
Chris@10
|
178 T1n = VFNMS(LDK(KP923879532), T1m, T1f);
|
Chris@10
|
179 T1v = VFMA(LDK(KP923879532), T1m, T1f);
|
Chris@10
|
180 T1C = VFMA(LDK(KP923879532), T1B, T1A);
|
Chris@10
|
181 T1E = VFNMS(LDK(KP923879532), T1B, T1A);
|
Chris@10
|
182 ST(&(x[WS(rs, 8)]), VSUB(T19, T1a), ms, &(x[0]));
|
Chris@10
|
183 ST(&(x[0]), VADD(T19, T1a), ms, &(x[0]));
|
Chris@10
|
184 ST(&(x[WS(rs, 4)]), VFMAI(T18, T15), ms, &(x[0]));
|
Chris@10
|
185 ST(&(x[WS(rs, 12)]), VFNMSI(T18, T15), ms, &(x[0]));
|
Chris@10
|
186 {
|
Chris@10
|
187 V T10, T12, TK, T11;
|
Chris@10
|
188 T10 = VFNMS(LDK(KP707106781), TZ, TY);
|
Chris@10
|
189 T12 = VFMA(LDK(KP707106781), TZ, TY);
|
Chris@10
|
190 TK = VFNMS(LDK(KP707106781), TJ, Tg);
|
Chris@10
|
191 T11 = VFMA(LDK(KP707106781), TJ, Tg);
|
Chris@10
|
192 ST(&(x[WS(rs, 15)]), VFNMSI(T1w, T1v), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
193 ST(&(x[WS(rs, 1)]), VFMAI(T1w, T1v), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
194 ST(&(x[WS(rs, 9)]), VFMAI(T1u, T1n), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
195 ST(&(x[WS(rs, 7)]), VFNMSI(T1u, T1n), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
196 ST(&(x[WS(rs, 3)]), VFNMSI(T1E, T1D), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
197 ST(&(x[WS(rs, 13)]), VFMAI(T1E, T1D), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
198 ST(&(x[WS(rs, 11)]), VFNMSI(T1C, T1z), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
199 ST(&(x[WS(rs, 5)]), VFMAI(T1C, T1z), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
200 ST(&(x[WS(rs, 2)]), VFMAI(T12, T11), ms, &(x[0]));
|
Chris@10
|
201 ST(&(x[WS(rs, 14)]), VFNMSI(T12, T11), ms, &(x[0]));
|
Chris@10
|
202 ST(&(x[WS(rs, 10)]), VFMAI(T10, TK), ms, &(x[0]));
|
Chris@10
|
203 ST(&(x[WS(rs, 6)]), VFNMSI(T10, TK), ms, &(x[0]));
|
Chris@10
|
204 }
|
Chris@10
|
205 }
|
Chris@10
|
206 }
|
Chris@10
|
207 }
|
Chris@10
|
208 }
|
Chris@10
|
209 }
|
Chris@10
|
210 }
|
Chris@10
|
211 }
|
Chris@10
|
212 VLEAVE();
|
Chris@10
|
213 }
|
Chris@10
|
214
|
Chris@10
|
215 static const tw_instr twinstr[] = {
|
Chris@10
|
216 VTW(0, 1),
|
Chris@10
|
217 VTW(0, 3),
|
Chris@10
|
218 VTW(0, 9),
|
Chris@10
|
219 VTW(0, 15),
|
Chris@10
|
220 {TW_NEXT, VL, 0}
|
Chris@10
|
221 };
|
Chris@10
|
222
|
Chris@10
|
223 static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, {64, 52, 34, 0}, 0, 0, 0 };
|
Chris@10
|
224
|
Chris@10
|
225 void XSIMD(codelet_t3bv_16) (planner *p) {
|
Chris@10
|
226 X(kdft_dit_register) (p, t3bv_16, &desc);
|
Chris@10
|
227 }
|
Chris@10
|
228 #else /* HAVE_FMA */
|
Chris@10
|
229
|
Chris@10
|
230 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include t3b.h -sign 1 */
|
Chris@10
|
231
|
Chris@10
|
232 /*
|
Chris@10
|
233 * This function contains 98 FP additions, 64 FP multiplications,
|
Chris@10
|
234 * (or, 94 additions, 60 multiplications, 4 fused multiply/add),
|
Chris@10
|
235 * 51 stack variables, 3 constants, and 32 memory accesses
|
Chris@10
|
236 */
|
Chris@10
|
237 #include "t3b.h"
|
Chris@10
|
238
|
Chris@10
|
239 static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
240 {
|
Chris@10
|
241 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
|
Chris@10
|
242 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
Chris@10
|
243 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
244 {
|
Chris@10
|
245 INT m;
|
Chris@10
|
246 R *x;
|
Chris@10
|
247 x = ii;
|
Chris@10
|
248 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
|
Chris@10
|
249 V T1, T8, T9, Tl, Ti, TE, T4, Ta, TO, TV, Td, Tm, TA, TH, Ts;
|
Chris@10
|
250 T1 = LDW(&(W[0]));
|
Chris@10
|
251 T8 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
252 T9 = VZMUL(T1, T8);
|
Chris@10
|
253 Tl = VZMULJ(T1, T8);
|
Chris@10
|
254 Ti = LDW(&(W[TWVL * 6]));
|
Chris@10
|
255 TE = VZMULJ(T1, Ti);
|
Chris@10
|
256 T4 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
257 Ta = VZMULJ(T9, T4);
|
Chris@10
|
258 TO = VZMUL(T8, T4);
|
Chris@10
|
259 TV = VZMULJ(T1, T4);
|
Chris@10
|
260 Td = VZMUL(T9, T4);
|
Chris@10
|
261 Tm = VZMULJ(Tl, T4);
|
Chris@10
|
262 TA = VZMUL(T1, T4);
|
Chris@10
|
263 TH = VZMULJ(T8, T4);
|
Chris@10
|
264 Ts = VZMUL(Tl, T4);
|
Chris@10
|
265 {
|
Chris@10
|
266 V TY, T1q, TR, T1r, T1m, T1n, TL, TZ, T1f, T1g, T1h, Th, T11, T1i, T1j;
|
Chris@10
|
267 V T1k, Tw, T12, TU, TX, TW;
|
Chris@10
|
268 TU = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
269 TW = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
270 TX = VZMUL(TV, TW);
|
Chris@10
|
271 TY = VSUB(TU, TX);
|
Chris@10
|
272 T1q = VADD(TU, TX);
|
Chris@10
|
273 {
|
Chris@10
|
274 V TN, TQ, TM, TP;
|
Chris@10
|
275 TM = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
276 TN = VZMUL(T9, TM);
|
Chris@10
|
277 TP = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
Chris@10
|
278 TQ = VZMUL(TO, TP);
|
Chris@10
|
279 TR = VSUB(TN, TQ);
|
Chris@10
|
280 T1r = VADD(TN, TQ);
|
Chris@10
|
281 }
|
Chris@10
|
282 {
|
Chris@10
|
283 V Tz, TJ, TC, TG, TD, TK;
|
Chris@10
|
284 {
|
Chris@10
|
285 V Ty, TI, TB, TF;
|
Chris@10
|
286 Ty = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
287 Tz = VZMUL(Tl, Ty);
|
Chris@10
|
288 TI = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
289 TJ = VZMUL(TH, TI);
|
Chris@10
|
290 TB = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
291 TC = VZMUL(TA, TB);
|
Chris@10
|
292 TF = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
Chris@10
|
293 TG = VZMUL(TE, TF);
|
Chris@10
|
294 }
|
Chris@10
|
295 T1m = VADD(Tz, TC);
|
Chris@10
|
296 T1n = VADD(TG, TJ);
|
Chris@10
|
297 TD = VSUB(Tz, TC);
|
Chris@10
|
298 TK = VSUB(TG, TJ);
|
Chris@10
|
299 TL = VMUL(LDK(KP707106781), VSUB(TD, TK));
|
Chris@10
|
300 TZ = VMUL(LDK(KP707106781), VADD(TD, TK));
|
Chris@10
|
301 }
|
Chris@10
|
302 {
|
Chris@10
|
303 V T3, Tf, T6, Tc, T7, Tg;
|
Chris@10
|
304 {
|
Chris@10
|
305 V T2, Te, T5, Tb;
|
Chris@10
|
306 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
307 T3 = VZMUL(T1, T2);
|
Chris@10
|
308 Te = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
309 Tf = VZMUL(Td, Te);
|
Chris@10
|
310 T5 = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
311 T6 = VZMUL(T4, T5);
|
Chris@10
|
312 Tb = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
313 Tc = VZMUL(Ta, Tb);
|
Chris@10
|
314 }
|
Chris@10
|
315 T1f = VADD(T3, T6);
|
Chris@10
|
316 T1g = VADD(Tc, Tf);
|
Chris@10
|
317 T1h = VSUB(T1f, T1g);
|
Chris@10
|
318 T7 = VSUB(T3, T6);
|
Chris@10
|
319 Tg = VSUB(Tc, Tf);
|
Chris@10
|
320 Th = VFNMS(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), T7));
|
Chris@10
|
321 T11 = VFMA(LDK(KP382683432), T7, VMUL(LDK(KP923879532), Tg));
|
Chris@10
|
322 }
|
Chris@10
|
323 {
|
Chris@10
|
324 V Tk, Tu, To, Tr, Tp, Tv;
|
Chris@10
|
325 {
|
Chris@10
|
326 V Tj, Tt, Tn, Tq;
|
Chris@10
|
327 Tj = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
328 Tk = VZMUL(Ti, Tj);
|
Chris@10
|
329 Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
330 Tu = VZMUL(Ts, Tt);
|
Chris@10
|
331 Tn = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
332 To = VZMUL(Tm, Tn);
|
Chris@10
|
333 Tq = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
334 Tr = VZMUL(T8, Tq);
|
Chris@10
|
335 }
|
Chris@10
|
336 T1i = VADD(Tk, To);
|
Chris@10
|
337 T1j = VADD(Tr, Tu);
|
Chris@10
|
338 T1k = VSUB(T1i, T1j);
|
Chris@10
|
339 Tp = VSUB(Tk, To);
|
Chris@10
|
340 Tv = VSUB(Tr, Tu);
|
Chris@10
|
341 Tw = VFMA(LDK(KP923879532), Tp, VMUL(LDK(KP382683432), Tv));
|
Chris@10
|
342 T12 = VFNMS(LDK(KP382683432), Tp, VMUL(LDK(KP923879532), Tv));
|
Chris@10
|
343 }
|
Chris@10
|
344 {
|
Chris@10
|
345 V T1p, T1v, T1u, T1w;
|
Chris@10
|
346 {
|
Chris@10
|
347 V T1l, T1o, T1s, T1t;
|
Chris@10
|
348 T1l = VMUL(LDK(KP707106781), VSUB(T1h, T1k));
|
Chris@10
|
349 T1o = VSUB(T1m, T1n);
|
Chris@10
|
350 T1p = VBYI(VSUB(T1l, T1o));
|
Chris@10
|
351 T1v = VBYI(VADD(T1o, T1l));
|
Chris@10
|
352 T1s = VSUB(T1q, T1r);
|
Chris@10
|
353 T1t = VMUL(LDK(KP707106781), VADD(T1h, T1k));
|
Chris@10
|
354 T1u = VSUB(T1s, T1t);
|
Chris@10
|
355 T1w = VADD(T1s, T1t);
|
Chris@10
|
356 }
|
Chris@10
|
357 ST(&(x[WS(rs, 6)]), VADD(T1p, T1u), ms, &(x[0]));
|
Chris@10
|
358 ST(&(x[WS(rs, 14)]), VSUB(T1w, T1v), ms, &(x[0]));
|
Chris@10
|
359 ST(&(x[WS(rs, 10)]), VSUB(T1u, T1p), ms, &(x[0]));
|
Chris@10
|
360 ST(&(x[WS(rs, 2)]), VADD(T1v, T1w), ms, &(x[0]));
|
Chris@10
|
361 }
|
Chris@10
|
362 {
|
Chris@10
|
363 V T1z, T1D, T1C, T1E;
|
Chris@10
|
364 {
|
Chris@10
|
365 V T1x, T1y, T1A, T1B;
|
Chris@10
|
366 T1x = VADD(T1q, T1r);
|
Chris@10
|
367 T1y = VADD(T1m, T1n);
|
Chris@10
|
368 T1z = VSUB(T1x, T1y);
|
Chris@10
|
369 T1D = VADD(T1x, T1y);
|
Chris@10
|
370 T1A = VADD(T1f, T1g);
|
Chris@10
|
371 T1B = VADD(T1i, T1j);
|
Chris@10
|
372 T1C = VBYI(VSUB(T1A, T1B));
|
Chris@10
|
373 T1E = VADD(T1A, T1B);
|
Chris@10
|
374 }
|
Chris@10
|
375 ST(&(x[WS(rs, 12)]), VSUB(T1z, T1C), ms, &(x[0]));
|
Chris@10
|
376 ST(&(x[0]), VADD(T1D, T1E), ms, &(x[0]));
|
Chris@10
|
377 ST(&(x[WS(rs, 4)]), VADD(T1z, T1C), ms, &(x[0]));
|
Chris@10
|
378 ST(&(x[WS(rs, 8)]), VSUB(T1D, T1E), ms, &(x[0]));
|
Chris@10
|
379 }
|
Chris@10
|
380 {
|
Chris@10
|
381 V TT, T15, T14, T16;
|
Chris@10
|
382 {
|
Chris@10
|
383 V Tx, TS, T10, T13;
|
Chris@10
|
384 Tx = VSUB(Th, Tw);
|
Chris@10
|
385 TS = VSUB(TL, TR);
|
Chris@10
|
386 TT = VBYI(VSUB(Tx, TS));
|
Chris@10
|
387 T15 = VBYI(VADD(TS, Tx));
|
Chris@10
|
388 T10 = VSUB(TY, TZ);
|
Chris@10
|
389 T13 = VSUB(T11, T12);
|
Chris@10
|
390 T14 = VSUB(T10, T13);
|
Chris@10
|
391 T16 = VADD(T10, T13);
|
Chris@10
|
392 }
|
Chris@10
|
393 ST(&(x[WS(rs, 5)]), VADD(TT, T14), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
394 ST(&(x[WS(rs, 13)]), VSUB(T16, T15), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
395 ST(&(x[WS(rs, 11)]), VSUB(T14, TT), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
396 ST(&(x[WS(rs, 3)]), VADD(T15, T16), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
397 }
|
Chris@10
|
398 {
|
Chris@10
|
399 V T19, T1d, T1c, T1e;
|
Chris@10
|
400 {
|
Chris@10
|
401 V T17, T18, T1a, T1b;
|
Chris@10
|
402 T17 = VADD(TY, TZ);
|
Chris@10
|
403 T18 = VADD(Th, Tw);
|
Chris@10
|
404 T19 = VADD(T17, T18);
|
Chris@10
|
405 T1d = VSUB(T17, T18);
|
Chris@10
|
406 T1a = VADD(TR, TL);
|
Chris@10
|
407 T1b = VADD(T11, T12);
|
Chris@10
|
408 T1c = VBYI(VADD(T1a, T1b));
|
Chris@10
|
409 T1e = VBYI(VSUB(T1b, T1a));
|
Chris@10
|
410 }
|
Chris@10
|
411 ST(&(x[WS(rs, 15)]), VSUB(T19, T1c), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
412 ST(&(x[WS(rs, 7)]), VADD(T1d, T1e), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
413 ST(&(x[WS(rs, 1)]), VADD(T19, T1c), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
414 ST(&(x[WS(rs, 9)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
415 }
|
Chris@10
|
416 }
|
Chris@10
|
417 }
|
Chris@10
|
418 }
|
Chris@10
|
419 VLEAVE();
|
Chris@10
|
420 }
|
Chris@10
|
421
|
Chris@10
|
422 static const tw_instr twinstr[] = {
|
Chris@10
|
423 VTW(0, 1),
|
Chris@10
|
424 VTW(0, 3),
|
Chris@10
|
425 VTW(0, 9),
|
Chris@10
|
426 VTW(0, 15),
|
Chris@10
|
427 {TW_NEXT, VL, 0}
|
Chris@10
|
428 };
|
Chris@10
|
429
|
Chris@10
|
430 static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, {94, 60, 4, 0}, 0, 0, 0 };
|
Chris@10
|
431
|
Chris@10
|
432 void XSIMD(codelet_t3bv_16) (planner *p) {
|
Chris@10
|
433 X(kdft_dit_register) (p, t3bv_16, &desc);
|
Chris@10
|
434 }
|
Chris@10
|
435 #endif /* HAVE_FMA */
|