Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:39:22 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3bv_10 -include t3b.h -sign 1 */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 57 FP additions, 52 FP multiplications,
|
Chris@10
|
32 * (or, 39 additions, 34 multiplications, 18 fused multiply/add),
|
Chris@10
|
33 * 57 stack variables, 4 constants, and 20 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "t3b.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t3bv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
43 {
|
Chris@10
|
44 INT m;
|
Chris@10
|
45 R *x;
|
Chris@10
|
46 x = ii;
|
Chris@10
|
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
|
Chris@10
|
48 V T1, T7, Th, Tx, Tr, Td, Tp, T6, Tv, Tc, Te, Ti, Tl, T2, T3;
|
Chris@10
|
49 V T5;
|
Chris@10
|
50 T2 = LDW(&(W[0]));
|
Chris@10
|
51 T3 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
52 T5 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
53 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
54 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
55 {
|
Chris@10
|
56 V To, Tw, Tq, Tu, Ta, T4, Tt, Tk, Tb;
|
Chris@10
|
57 To = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
58 Tw = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
59 Tq = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
60 Tu = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
61 Ta = VZMULJ(T2, T3);
|
Chris@10
|
62 T4 = VZMUL(T2, T3);
|
Chris@10
|
63 Th = VZMULJ(T2, T5);
|
Chris@10
|
64 Tt = VZMULJ(T3, T5);
|
Chris@10
|
65 Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
66 Tx = VZMUL(T2, Tw);
|
Chris@10
|
67 Tr = VZMUL(T5, Tq);
|
Chris@10
|
68 Tk = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
69 Td = VZMULJ(Ta, T5);
|
Chris@10
|
70 Tp = VZMUL(T4, To);
|
Chris@10
|
71 T6 = VZMULJ(T4, T5);
|
Chris@10
|
72 Tv = VZMUL(Tt, Tu);
|
Chris@10
|
73 Tc = VZMUL(Ta, Tb);
|
Chris@10
|
74 Te = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
75 Ti = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
76 Tl = VZMUL(T3, Tk);
|
Chris@10
|
77 }
|
Chris@10
|
78 {
|
Chris@10
|
79 V TN, Ts, T8, Ty, TO, Tf, Tj;
|
Chris@10
|
80 TN = VADD(Tp, Tr);
|
Chris@10
|
81 Ts = VSUB(Tp, Tr);
|
Chris@10
|
82 T8 = VZMUL(T6, T7);
|
Chris@10
|
83 Ty = VSUB(Tv, Tx);
|
Chris@10
|
84 TO = VADD(Tv, Tx);
|
Chris@10
|
85 Tf = VZMUL(Td, Te);
|
Chris@10
|
86 Tj = VZMUL(Th, Ti);
|
Chris@10
|
87 {
|
Chris@10
|
88 V T9, TJ, TP, TU, Tz, TF, Tg, TK, Tm, TL;
|
Chris@10
|
89 T9 = VSUB(T1, T8);
|
Chris@10
|
90 TJ = VADD(T1, T8);
|
Chris@10
|
91 TP = VADD(TN, TO);
|
Chris@10
|
92 TU = VSUB(TN, TO);
|
Chris@10
|
93 Tz = VADD(Ts, Ty);
|
Chris@10
|
94 TF = VSUB(Ts, Ty);
|
Chris@10
|
95 Tg = VSUB(Tc, Tf);
|
Chris@10
|
96 TK = VADD(Tc, Tf);
|
Chris@10
|
97 Tm = VSUB(Tj, Tl);
|
Chris@10
|
98 TL = VADD(Tj, Tl);
|
Chris@10
|
99 {
|
Chris@10
|
100 V TM, TV, Tn, TE;
|
Chris@10
|
101 TM = VADD(TK, TL);
|
Chris@10
|
102 TV = VSUB(TK, TL);
|
Chris@10
|
103 Tn = VADD(Tg, Tm);
|
Chris@10
|
104 TE = VSUB(Tg, Tm);
|
Chris@10
|
105 {
|
Chris@10
|
106 V TW, TY, TS, TQ, TG, TI, TC, TA, TR, TB;
|
Chris@10
|
107 TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TV, TU));
|
Chris@10
|
108 TY = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TU, TV));
|
Chris@10
|
109 TS = VSUB(TM, TP);
|
Chris@10
|
110 TQ = VADD(TM, TP);
|
Chris@10
|
111 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TF, TE));
|
Chris@10
|
112 TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TF));
|
Chris@10
|
113 TC = VSUB(Tn, Tz);
|
Chris@10
|
114 TA = VADD(Tn, Tz);
|
Chris@10
|
115 ST(&(x[0]), VADD(TJ, TQ), ms, &(x[0]));
|
Chris@10
|
116 TR = VFNMS(LDK(KP250000000), TQ, TJ);
|
Chris@10
|
117 ST(&(x[WS(rs, 5)]), VADD(T9, TA), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
118 TB = VFNMS(LDK(KP250000000), TA, T9);
|
Chris@10
|
119 {
|
Chris@10
|
120 V TX, TT, TH, TD;
|
Chris@10
|
121 TX = VFMA(LDK(KP559016994), TS, TR);
|
Chris@10
|
122 TT = VFNMS(LDK(KP559016994), TS, TR);
|
Chris@10
|
123 TH = VFNMS(LDK(KP559016994), TC, TB);
|
Chris@10
|
124 TD = VFMA(LDK(KP559016994), TC, TB);
|
Chris@10
|
125 ST(&(x[WS(rs, 8)]), VFMAI(TW, TT), ms, &(x[0]));
|
Chris@10
|
126 ST(&(x[WS(rs, 2)]), VFNMSI(TW, TT), ms, &(x[0]));
|
Chris@10
|
127 ST(&(x[WS(rs, 6)]), VFMAI(TY, TX), ms, &(x[0]));
|
Chris@10
|
128 ST(&(x[WS(rs, 4)]), VFNMSI(TY, TX), ms, &(x[0]));
|
Chris@10
|
129 ST(&(x[WS(rs, 9)]), VFNMSI(TG, TD), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
130 ST(&(x[WS(rs, 1)]), VFMAI(TG, TD), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
131 ST(&(x[WS(rs, 7)]), VFNMSI(TI, TH), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
132 ST(&(x[WS(rs, 3)]), VFMAI(TI, TH), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
133 }
|
Chris@10
|
134 }
|
Chris@10
|
135 }
|
Chris@10
|
136 }
|
Chris@10
|
137 }
|
Chris@10
|
138 }
|
Chris@10
|
139 }
|
Chris@10
|
140 VLEAVE();
|
Chris@10
|
141 }
|
Chris@10
|
142
|
Chris@10
|
143 static const tw_instr twinstr[] = {
|
Chris@10
|
144 VTW(0, 1),
|
Chris@10
|
145 VTW(0, 3),
|
Chris@10
|
146 VTW(0, 9),
|
Chris@10
|
147 {TW_NEXT, VL, 0}
|
Chris@10
|
148 };
|
Chris@10
|
149
|
Chris@10
|
150 static const ct_desc desc = { 10, XSIMD_STRING("t3bv_10"), twinstr, &GENUS, {39, 34, 18, 0}, 0, 0, 0 };
|
Chris@10
|
151
|
Chris@10
|
152 void XSIMD(codelet_t3bv_10) (planner *p) {
|
Chris@10
|
153 X(kdft_dit_register) (p, t3bv_10, &desc);
|
Chris@10
|
154 }
|
Chris@10
|
155 #else /* HAVE_FMA */
|
Chris@10
|
156
|
Chris@10
|
157 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3bv_10 -include t3b.h -sign 1 */
|
Chris@10
|
158
|
Chris@10
|
159 /*
|
Chris@10
|
160 * This function contains 57 FP additions, 42 FP multiplications,
|
Chris@10
|
161 * (or, 51 additions, 36 multiplications, 6 fused multiply/add),
|
Chris@10
|
162 * 41 stack variables, 4 constants, and 20 memory accesses
|
Chris@10
|
163 */
|
Chris@10
|
164 #include "t3b.h"
|
Chris@10
|
165
|
Chris@10
|
166 static void t3bv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
167 {
|
Chris@10
|
168 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
Chris@10
|
169 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
170 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
171 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
172 {
|
Chris@10
|
173 INT m;
|
Chris@10
|
174 R *x;
|
Chris@10
|
175 x = ii;
|
Chris@10
|
176 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
|
Chris@10
|
177 V T1, T2, T3, Ti, T6, T7, TA, Tb, To;
|
Chris@10
|
178 T1 = LDW(&(W[0]));
|
Chris@10
|
179 T2 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
180 T3 = VZMULJ(T1, T2);
|
Chris@10
|
181 Ti = VZMUL(T1, T2);
|
Chris@10
|
182 T6 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
183 T7 = VZMULJ(T3, T6);
|
Chris@10
|
184 TA = VZMULJ(Ti, T6);
|
Chris@10
|
185 Tb = VZMULJ(T1, T6);
|
Chris@10
|
186 To = VZMULJ(T2, T6);
|
Chris@10
|
187 {
|
Chris@10
|
188 V TD, TQ, Tn, Tt, Tx, TM, TN, TS, Ta, Tg, Tw, TJ, TK, TR, Tz;
|
Chris@10
|
189 V TC, TB;
|
Chris@10
|
190 Tz = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
191 TB = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
192 TC = VZMUL(TA, TB);
|
Chris@10
|
193 TD = VSUB(Tz, TC);
|
Chris@10
|
194 TQ = VADD(Tz, TC);
|
Chris@10
|
195 {
|
Chris@10
|
196 V Tk, Ts, Tm, Tq;
|
Chris@10
|
197 {
|
Chris@10
|
198 V Tj, Tr, Tl, Tp;
|
Chris@10
|
199 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
200 Tk = VZMUL(Ti, Tj);
|
Chris@10
|
201 Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
202 Ts = VZMUL(T1, Tr);
|
Chris@10
|
203 Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
204 Tm = VZMUL(T6, Tl);
|
Chris@10
|
205 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
206 Tq = VZMUL(To, Tp);
|
Chris@10
|
207 }
|
Chris@10
|
208 Tn = VSUB(Tk, Tm);
|
Chris@10
|
209 Tt = VSUB(Tq, Ts);
|
Chris@10
|
210 Tx = VADD(Tn, Tt);
|
Chris@10
|
211 TM = VADD(Tk, Tm);
|
Chris@10
|
212 TN = VADD(Tq, Ts);
|
Chris@10
|
213 TS = VADD(TM, TN);
|
Chris@10
|
214 }
|
Chris@10
|
215 {
|
Chris@10
|
216 V T5, Tf, T9, Td;
|
Chris@10
|
217 {
|
Chris@10
|
218 V T4, Te, T8, Tc;
|
Chris@10
|
219 T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
220 T5 = VZMUL(T3, T4);
|
Chris@10
|
221 Te = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
222 Tf = VZMUL(T2, Te);
|
Chris@10
|
223 T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
224 T9 = VZMUL(T7, T8);
|
Chris@10
|
225 Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
226 Td = VZMUL(Tb, Tc);
|
Chris@10
|
227 }
|
Chris@10
|
228 Ta = VSUB(T5, T9);
|
Chris@10
|
229 Tg = VSUB(Td, Tf);
|
Chris@10
|
230 Tw = VADD(Ta, Tg);
|
Chris@10
|
231 TJ = VADD(T5, T9);
|
Chris@10
|
232 TK = VADD(Td, Tf);
|
Chris@10
|
233 TR = VADD(TJ, TK);
|
Chris@10
|
234 }
|
Chris@10
|
235 {
|
Chris@10
|
236 V Ty, TE, TF, Tv, TI, Th, Tu, TH, TG;
|
Chris@10
|
237 Ty = VMUL(LDK(KP559016994), VSUB(Tw, Tx));
|
Chris@10
|
238 TE = VADD(Tw, Tx);
|
Chris@10
|
239 TF = VFNMS(LDK(KP250000000), TE, TD);
|
Chris@10
|
240 Th = VSUB(Ta, Tg);
|
Chris@10
|
241 Tu = VSUB(Tn, Tt);
|
Chris@10
|
242 Tv = VBYI(VFMA(LDK(KP951056516), Th, VMUL(LDK(KP587785252), Tu)));
|
Chris@10
|
243 TI = VBYI(VFNMS(LDK(KP951056516), Tu, VMUL(LDK(KP587785252), Th)));
|
Chris@10
|
244 ST(&(x[WS(rs, 5)]), VADD(TD, TE), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
245 TH = VSUB(TF, Ty);
|
Chris@10
|
246 ST(&(x[WS(rs, 3)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
247 ST(&(x[WS(rs, 7)]), VADD(TI, TH), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
248 TG = VADD(Ty, TF);
|
Chris@10
|
249 ST(&(x[WS(rs, 1)]), VADD(Tv, TG), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
250 ST(&(x[WS(rs, 9)]), VSUB(TG, Tv), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
251 }
|
Chris@10
|
252 {
|
Chris@10
|
253 V TV, TT, TU, TP, TY, TL, TO, TX, TW;
|
Chris@10
|
254 TV = VMUL(LDK(KP559016994), VSUB(TR, TS));
|
Chris@10
|
255 TT = VADD(TR, TS);
|
Chris@10
|
256 TU = VFNMS(LDK(KP250000000), TT, TQ);
|
Chris@10
|
257 TL = VSUB(TJ, TK);
|
Chris@10
|
258 TO = VSUB(TM, TN);
|
Chris@10
|
259 TP = VBYI(VFNMS(LDK(KP951056516), TO, VMUL(LDK(KP587785252), TL)));
|
Chris@10
|
260 TY = VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TO)));
|
Chris@10
|
261 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0]));
|
Chris@10
|
262 TX = VADD(TV, TU);
|
Chris@10
|
263 ST(&(x[WS(rs, 4)]), VSUB(TX, TY), ms, &(x[0]));
|
Chris@10
|
264 ST(&(x[WS(rs, 6)]), VADD(TY, TX), ms, &(x[0]));
|
Chris@10
|
265 TW = VSUB(TU, TV);
|
Chris@10
|
266 ST(&(x[WS(rs, 2)]), VADD(TP, TW), ms, &(x[0]));
|
Chris@10
|
267 ST(&(x[WS(rs, 8)]), VSUB(TW, TP), ms, &(x[0]));
|
Chris@10
|
268 }
|
Chris@10
|
269 }
|
Chris@10
|
270 }
|
Chris@10
|
271 }
|
Chris@10
|
272 VLEAVE();
|
Chris@10
|
273 }
|
Chris@10
|
274
|
Chris@10
|
275 static const tw_instr twinstr[] = {
|
Chris@10
|
276 VTW(0, 1),
|
Chris@10
|
277 VTW(0, 3),
|
Chris@10
|
278 VTW(0, 9),
|
Chris@10
|
279 {TW_NEXT, VL, 0}
|
Chris@10
|
280 };
|
Chris@10
|
281
|
Chris@10
|
282 static const ct_desc desc = { 10, XSIMD_STRING("t3bv_10"), twinstr, &GENUS, {51, 36, 6, 0}, 0, 0, 0 };
|
Chris@10
|
283
|
Chris@10
|
284 void XSIMD(codelet_t3bv_10) (planner *p) {
|
Chris@10
|
285 X(kdft_dit_register) (p, t3bv_10, &desc);
|
Chris@10
|
286 }
|
Chris@10
|
287 #endif /* HAVE_FMA */
|