Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:39:26 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 8 -name t2sv_8 -include ts.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 74 FP additions, 50 FP multiplications,
|
Chris@10
|
32 * (or, 44 additions, 20 multiplications, 30 fused multiply/add),
|
Chris@10
|
33 * 64 stack variables, 1 constants, and 32 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "ts.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t2sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
40 {
|
Chris@10
|
41 INT m;
|
Chris@10
|
42 for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
|
Chris@10
|
43 V T1m, T1l, T1k, T1u, T1n, T1o;
|
Chris@10
|
44 {
|
Chris@10
|
45 V T2, T3, Tl, Tn, T5, T6;
|
Chris@10
|
46 T2 = LDW(&(W[0]));
|
Chris@10
|
47 T3 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
48 Tl = LDW(&(W[TWVL * 4]));
|
Chris@10
|
49 Tn = LDW(&(W[TWVL * 5]));
|
Chris@10
|
50 T5 = LDW(&(W[TWVL * 1]));
|
Chris@10
|
51 T6 = LDW(&(W[TWVL * 3]));
|
Chris@10
|
52 {
|
Chris@10
|
53 V T1, T1s, TK, T1r, Td, Tk, TG, TC, TY, Tu, TW, TL, TM, TO, TQ;
|
Chris@10
|
54 V Tx, Tz, TD, TH;
|
Chris@10
|
55 {
|
Chris@10
|
56 V T8, T4, Tm, Tr, Tc, Ta;
|
Chris@10
|
57 T1 = LD(&(ri[0]), ms, &(ri[0]));
|
Chris@10
|
58 T1s = LD(&(ii[0]), ms, &(ii[0]));
|
Chris@10
|
59 T8 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
|
Chris@10
|
60 T4 = VMUL(T2, T3);
|
Chris@10
|
61 Tm = VMUL(T2, Tl);
|
Chris@10
|
62 Tr = VMUL(T2, Tn);
|
Chris@10
|
63 Tc = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
|
Chris@10
|
64 Ta = VMUL(T2, T6);
|
Chris@10
|
65 {
|
Chris@10
|
66 V Tp, Tt, Tg, T7, Tf, To, Ts, Ti, Tb, Tj;
|
Chris@10
|
67 Tp = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
|
Chris@10
|
68 Tt = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
|
Chris@10
|
69 Tg = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
|
Chris@10
|
70 T7 = VFNMS(T5, T6, T4);
|
Chris@10
|
71 Tf = VFMA(T5, T6, T4);
|
Chris@10
|
72 To = VFMA(T5, Tn, Tm);
|
Chris@10
|
73 Ts = VFNMS(T5, Tl, Tr);
|
Chris@10
|
74 Ti = VFNMS(T5, T3, Ta);
|
Chris@10
|
75 Tb = VFMA(T5, T3, Ta);
|
Chris@10
|
76 Tj = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
|
Chris@10
|
77 TK = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
78 {
|
Chris@10
|
79 V T1q, T9, Th, TF;
|
Chris@10
|
80 T1q = VMUL(T7, Tc);
|
Chris@10
|
81 T9 = VMUL(T7, T8);
|
Chris@10
|
82 Th = VMUL(Tf, Tg);
|
Chris@10
|
83 TF = VMUL(Tf, Tn);
|
Chris@10
|
84 {
|
Chris@10
|
85 V TB, TX, Tq, TV;
|
Chris@10
|
86 TB = VMUL(Tf, Tl);
|
Chris@10
|
87 TX = VMUL(To, Tt);
|
Chris@10
|
88 Tq = VMUL(To, Tp);
|
Chris@10
|
89 TV = VMUL(Tf, Tj);
|
Chris@10
|
90 T1r = VFNMS(Tb, T8, T1q);
|
Chris@10
|
91 Td = VFMA(Tb, Tc, T9);
|
Chris@10
|
92 Tk = VFMA(Ti, Tj, Th);
|
Chris@10
|
93 TG = VFNMS(Ti, Tl, TF);
|
Chris@10
|
94 TC = VFMA(Ti, Tn, TB);
|
Chris@10
|
95 TY = VFNMS(Ts, Tp, TX);
|
Chris@10
|
96 Tu = VFMA(Ts, Tt, Tq);
|
Chris@10
|
97 TW = VFNMS(Ti, Tg, TV);
|
Chris@10
|
98 TL = VMUL(Tl, TK);
|
Chris@10
|
99 }
|
Chris@10
|
100 }
|
Chris@10
|
101 TM = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
102 TO = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
103 TQ = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
104 Tx = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
105 Tz = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
106 TD = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
107 TH = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
108 }
|
Chris@10
|
109 }
|
Chris@10
|
110 {
|
Chris@10
|
111 V Te, T1p, T1g, T10, TS, T18, T1d, T1t, T1x, T1y, Tv, TJ, T11, T16;
|
Chris@10
|
112 {
|
Chris@10
|
113 V TN, T1a, TR, T1c, TA, T13, TI, T15;
|
Chris@10
|
114 {
|
Chris@10
|
115 V TU, T19, TP, T1b, Ty, T12, TE, T14, TZ;
|
Chris@10
|
116 TU = VSUB(T1, Td);
|
Chris@10
|
117 Te = VADD(T1, Td);
|
Chris@10
|
118 TN = VFMA(Tn, TM, TL);
|
Chris@10
|
119 T19 = VMUL(Tl, TM);
|
Chris@10
|
120 TP = VMUL(T3, TO);
|
Chris@10
|
121 T1b = VMUL(T3, TQ);
|
Chris@10
|
122 Ty = VMUL(T2, Tx);
|
Chris@10
|
123 T12 = VMUL(T2, Tz);
|
Chris@10
|
124 TE = VMUL(TC, TD);
|
Chris@10
|
125 T14 = VMUL(TC, TH);
|
Chris@10
|
126 T1p = VADD(TW, TY);
|
Chris@10
|
127 TZ = VSUB(TW, TY);
|
Chris@10
|
128 T1a = VFNMS(Tn, TK, T19);
|
Chris@10
|
129 TR = VFMA(T6, TQ, TP);
|
Chris@10
|
130 T1c = VFNMS(T6, TO, T1b);
|
Chris@10
|
131 TA = VFMA(T5, Tz, Ty);
|
Chris@10
|
132 T13 = VFNMS(T5, Tx, T12);
|
Chris@10
|
133 TI = VFMA(TG, TH, TE);
|
Chris@10
|
134 T15 = VFNMS(TG, TD, T14);
|
Chris@10
|
135 T1g = VSUB(TU, TZ);
|
Chris@10
|
136 T10 = VADD(TU, TZ);
|
Chris@10
|
137 }
|
Chris@10
|
138 TS = VADD(TN, TR);
|
Chris@10
|
139 T18 = VSUB(TN, TR);
|
Chris@10
|
140 T1d = VSUB(T1a, T1c);
|
Chris@10
|
141 T1m = VADD(T1a, T1c);
|
Chris@10
|
142 T1t = VADD(T1r, T1s);
|
Chris@10
|
143 T1x = VSUB(T1s, T1r);
|
Chris@10
|
144 T1y = VSUB(Tk, Tu);
|
Chris@10
|
145 Tv = VADD(Tk, Tu);
|
Chris@10
|
146 TJ = VADD(TA, TI);
|
Chris@10
|
147 T11 = VSUB(TA, TI);
|
Chris@10
|
148 T16 = VSUB(T13, T15);
|
Chris@10
|
149 T1l = VADD(T13, T15);
|
Chris@10
|
150 }
|
Chris@10
|
151 {
|
Chris@10
|
152 V Tw, T1w, T1v, TT;
|
Chris@10
|
153 {
|
Chris@10
|
154 V T1i, T1e, T1B, T1z, T1h, T17;
|
Chris@10
|
155 T1i = VADD(T18, T1d);
|
Chris@10
|
156 T1e = VSUB(T18, T1d);
|
Chris@10
|
157 T1B = VADD(T1y, T1x);
|
Chris@10
|
158 T1z = VSUB(T1x, T1y);
|
Chris@10
|
159 T1h = VSUB(T16, T11);
|
Chris@10
|
160 T17 = VADD(T11, T16);
|
Chris@10
|
161 T1k = VSUB(Te, Tv);
|
Chris@10
|
162 Tw = VADD(Te, Tv);
|
Chris@10
|
163 {
|
Chris@10
|
164 V T1A, T1j, T1C, T1f;
|
Chris@10
|
165 T1A = VADD(T1h, T1i);
|
Chris@10
|
166 T1j = VSUB(T1h, T1i);
|
Chris@10
|
167 T1C = VSUB(T1e, T17);
|
Chris@10
|
168 T1f = VADD(T17, T1e);
|
Chris@10
|
169 T1w = VSUB(T1t, T1p);
|
Chris@10
|
170 T1u = VADD(T1p, T1t);
|
Chris@10
|
171 T1v = VSUB(TS, TJ);
|
Chris@10
|
172 TT = VADD(TJ, TS);
|
Chris@10
|
173 ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1A, T1z), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
174 ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1A, T1z), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
175 ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1j, T1g), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
176 ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1j, T1g), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
177 ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1C, T1B), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
178 ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1C, T1B), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
179 ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T1f, T10), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
180 ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1f, T10), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
181 }
|
Chris@10
|
182 }
|
Chris@10
|
183 ST(&(ri[WS(rs, 4)]), VSUB(Tw, TT), ms, &(ri[0]));
|
Chris@10
|
184 ST(&(ri[0]), VADD(Tw, TT), ms, &(ri[0]));
|
Chris@10
|
185 ST(&(ii[WS(rs, 6)]), VSUB(T1w, T1v), ms, &(ii[0]));
|
Chris@10
|
186 ST(&(ii[WS(rs, 2)]), VADD(T1v, T1w), ms, &(ii[0]));
|
Chris@10
|
187 }
|
Chris@10
|
188 }
|
Chris@10
|
189 }
|
Chris@10
|
190 }
|
Chris@10
|
191 T1n = VSUB(T1l, T1m);
|
Chris@10
|
192 T1o = VADD(T1l, T1m);
|
Chris@10
|
193 ST(&(ii[0]), VADD(T1o, T1u), ms, &(ii[0]));
|
Chris@10
|
194 ST(&(ii[WS(rs, 4)]), VSUB(T1u, T1o), ms, &(ii[0]));
|
Chris@10
|
195 ST(&(ri[WS(rs, 2)]), VADD(T1k, T1n), ms, &(ri[0]));
|
Chris@10
|
196 ST(&(ri[WS(rs, 6)]), VSUB(T1k, T1n), ms, &(ri[0]));
|
Chris@10
|
197 }
|
Chris@10
|
198 }
|
Chris@10
|
199 VLEAVE();
|
Chris@10
|
200 }
|
Chris@10
|
201
|
Chris@10
|
202 static const tw_instr twinstr[] = {
|
Chris@10
|
203 VTW(0, 1),
|
Chris@10
|
204 VTW(0, 3),
|
Chris@10
|
205 VTW(0, 7),
|
Chris@10
|
206 {TW_NEXT, (2 * VL), 0}
|
Chris@10
|
207 };
|
Chris@10
|
208
|
Chris@10
|
209 static const ct_desc desc = { 8, XSIMD_STRING("t2sv_8"), twinstr, &GENUS, {44, 20, 30, 0}, 0, 0, 0 };
|
Chris@10
|
210
|
Chris@10
|
211 void XSIMD(codelet_t2sv_8) (planner *p) {
|
Chris@10
|
212 X(kdft_dit_register) (p, t2sv_8, &desc);
|
Chris@10
|
213 }
|
Chris@10
|
214 #else /* HAVE_FMA */
|
Chris@10
|
215
|
Chris@10
|
216 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 8 -name t2sv_8 -include ts.h */
|
Chris@10
|
217
|
Chris@10
|
218 /*
|
Chris@10
|
219 * This function contains 74 FP additions, 44 FP multiplications,
|
Chris@10
|
220 * (or, 56 additions, 26 multiplications, 18 fused multiply/add),
|
Chris@10
|
221 * 42 stack variables, 1 constants, and 32 memory accesses
|
Chris@10
|
222 */
|
Chris@10
|
223 #include "ts.h"
|
Chris@10
|
224
|
Chris@10
|
225 static void t2sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
226 {
|
Chris@10
|
227 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
228 {
|
Chris@10
|
229 INT m;
|
Chris@10
|
230 for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
|
Chris@10
|
231 V T2, T5, T3, T6, T8, Tc, Tg, Ti, Tl, Tm, Tn, Tz, Tp, Tx;
|
Chris@10
|
232 {
|
Chris@10
|
233 V T4, Tb, T7, Ta;
|
Chris@10
|
234 T2 = LDW(&(W[0]));
|
Chris@10
|
235 T5 = LDW(&(W[TWVL * 1]));
|
Chris@10
|
236 T3 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
237 T6 = LDW(&(W[TWVL * 3]));
|
Chris@10
|
238 T4 = VMUL(T2, T3);
|
Chris@10
|
239 Tb = VMUL(T5, T3);
|
Chris@10
|
240 T7 = VMUL(T5, T6);
|
Chris@10
|
241 Ta = VMUL(T2, T6);
|
Chris@10
|
242 T8 = VSUB(T4, T7);
|
Chris@10
|
243 Tc = VADD(Ta, Tb);
|
Chris@10
|
244 Tg = VADD(T4, T7);
|
Chris@10
|
245 Ti = VSUB(Ta, Tb);
|
Chris@10
|
246 Tl = LDW(&(W[TWVL * 4]));
|
Chris@10
|
247 Tm = LDW(&(W[TWVL * 5]));
|
Chris@10
|
248 Tn = VFMA(T2, Tl, VMUL(T5, Tm));
|
Chris@10
|
249 Tz = VFNMS(Ti, Tl, VMUL(Tg, Tm));
|
Chris@10
|
250 Tp = VFNMS(T5, Tl, VMUL(T2, Tm));
|
Chris@10
|
251 Tx = VFMA(Tg, Tl, VMUL(Ti, Tm));
|
Chris@10
|
252 }
|
Chris@10
|
253 {
|
Chris@10
|
254 V Tf, T1i, TL, T1d, TJ, T17, TV, TY, Ts, T1j, TO, T1a, TC, T16, TQ;
|
Chris@10
|
255 V TT;
|
Chris@10
|
256 {
|
Chris@10
|
257 V T1, T1c, Te, T1b, T9, Td;
|
Chris@10
|
258 T1 = LD(&(ri[0]), ms, &(ri[0]));
|
Chris@10
|
259 T1c = LD(&(ii[0]), ms, &(ii[0]));
|
Chris@10
|
260 T9 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
|
Chris@10
|
261 Td = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
|
Chris@10
|
262 Te = VFMA(T8, T9, VMUL(Tc, Td));
|
Chris@10
|
263 T1b = VFNMS(Tc, T9, VMUL(T8, Td));
|
Chris@10
|
264 Tf = VADD(T1, Te);
|
Chris@10
|
265 T1i = VSUB(T1c, T1b);
|
Chris@10
|
266 TL = VSUB(T1, Te);
|
Chris@10
|
267 T1d = VADD(T1b, T1c);
|
Chris@10
|
268 }
|
Chris@10
|
269 {
|
Chris@10
|
270 V TF, TW, TI, TX;
|
Chris@10
|
271 {
|
Chris@10
|
272 V TD, TE, TG, TH;
|
Chris@10
|
273 TD = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
274 TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
275 TF = VFMA(Tl, TD, VMUL(Tm, TE));
|
Chris@10
|
276 TW = VFNMS(Tm, TD, VMUL(Tl, TE));
|
Chris@10
|
277 TG = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
278 TH = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
279 TI = VFMA(T3, TG, VMUL(T6, TH));
|
Chris@10
|
280 TX = VFNMS(T6, TG, VMUL(T3, TH));
|
Chris@10
|
281 }
|
Chris@10
|
282 TJ = VADD(TF, TI);
|
Chris@10
|
283 T17 = VADD(TW, TX);
|
Chris@10
|
284 TV = VSUB(TF, TI);
|
Chris@10
|
285 TY = VSUB(TW, TX);
|
Chris@10
|
286 }
|
Chris@10
|
287 {
|
Chris@10
|
288 V Tk, TM, Tr, TN;
|
Chris@10
|
289 {
|
Chris@10
|
290 V Th, Tj, To, Tq;
|
Chris@10
|
291 Th = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
|
Chris@10
|
292 Tj = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
|
Chris@10
|
293 Tk = VFMA(Tg, Th, VMUL(Ti, Tj));
|
Chris@10
|
294 TM = VFNMS(Ti, Th, VMUL(Tg, Tj));
|
Chris@10
|
295 To = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
|
Chris@10
|
296 Tq = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
|
Chris@10
|
297 Tr = VFMA(Tn, To, VMUL(Tp, Tq));
|
Chris@10
|
298 TN = VFNMS(Tp, To, VMUL(Tn, Tq));
|
Chris@10
|
299 }
|
Chris@10
|
300 Ts = VADD(Tk, Tr);
|
Chris@10
|
301 T1j = VSUB(Tk, Tr);
|
Chris@10
|
302 TO = VSUB(TM, TN);
|
Chris@10
|
303 T1a = VADD(TM, TN);
|
Chris@10
|
304 }
|
Chris@10
|
305 {
|
Chris@10
|
306 V Tw, TR, TB, TS;
|
Chris@10
|
307 {
|
Chris@10
|
308 V Tu, Tv, Ty, TA;
|
Chris@10
|
309 Tu = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
310 Tv = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
311 Tw = VFMA(T2, Tu, VMUL(T5, Tv));
|
Chris@10
|
312 TR = VFNMS(T5, Tu, VMUL(T2, Tv));
|
Chris@10
|
313 Ty = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
314 TA = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
315 TB = VFMA(Tx, Ty, VMUL(Tz, TA));
|
Chris@10
|
316 TS = VFNMS(Tz, Ty, VMUL(Tx, TA));
|
Chris@10
|
317 }
|
Chris@10
|
318 TC = VADD(Tw, TB);
|
Chris@10
|
319 T16 = VADD(TR, TS);
|
Chris@10
|
320 TQ = VSUB(Tw, TB);
|
Chris@10
|
321 TT = VSUB(TR, TS);
|
Chris@10
|
322 }
|
Chris@10
|
323 {
|
Chris@10
|
324 V Tt, TK, T1f, T1g;
|
Chris@10
|
325 Tt = VADD(Tf, Ts);
|
Chris@10
|
326 TK = VADD(TC, TJ);
|
Chris@10
|
327 ST(&(ri[WS(rs, 4)]), VSUB(Tt, TK), ms, &(ri[0]));
|
Chris@10
|
328 ST(&(ri[0]), VADD(Tt, TK), ms, &(ri[0]));
|
Chris@10
|
329 {
|
Chris@10
|
330 V T19, T1e, T15, T18;
|
Chris@10
|
331 T19 = VADD(T16, T17);
|
Chris@10
|
332 T1e = VADD(T1a, T1d);
|
Chris@10
|
333 ST(&(ii[0]), VADD(T19, T1e), ms, &(ii[0]));
|
Chris@10
|
334 ST(&(ii[WS(rs, 4)]), VSUB(T1e, T19), ms, &(ii[0]));
|
Chris@10
|
335 T15 = VSUB(Tf, Ts);
|
Chris@10
|
336 T18 = VSUB(T16, T17);
|
Chris@10
|
337 ST(&(ri[WS(rs, 6)]), VSUB(T15, T18), ms, &(ri[0]));
|
Chris@10
|
338 ST(&(ri[WS(rs, 2)]), VADD(T15, T18), ms, &(ri[0]));
|
Chris@10
|
339 }
|
Chris@10
|
340 T1f = VSUB(TJ, TC);
|
Chris@10
|
341 T1g = VSUB(T1d, T1a);
|
Chris@10
|
342 ST(&(ii[WS(rs, 2)]), VADD(T1f, T1g), ms, &(ii[0]));
|
Chris@10
|
343 ST(&(ii[WS(rs, 6)]), VSUB(T1g, T1f), ms, &(ii[0]));
|
Chris@10
|
344 {
|
Chris@10
|
345 V T11, T1k, T14, T1h, T12, T13;
|
Chris@10
|
346 T11 = VSUB(TL, TO);
|
Chris@10
|
347 T1k = VSUB(T1i, T1j);
|
Chris@10
|
348 T12 = VSUB(TT, TQ);
|
Chris@10
|
349 T13 = VADD(TV, TY);
|
Chris@10
|
350 T14 = VMUL(LDK(KP707106781), VSUB(T12, T13));
|
Chris@10
|
351 T1h = VMUL(LDK(KP707106781), VADD(T12, T13));
|
Chris@10
|
352 ST(&(ri[WS(rs, 7)]), VSUB(T11, T14), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
353 ST(&(ii[WS(rs, 5)]), VSUB(T1k, T1h), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
354 ST(&(ri[WS(rs, 3)]), VADD(T11, T14), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
355 ST(&(ii[WS(rs, 1)]), VADD(T1h, T1k), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
356 }
|
Chris@10
|
357 {
|
Chris@10
|
358 V TP, T1m, T10, T1l, TU, TZ;
|
Chris@10
|
359 TP = VADD(TL, TO);
|
Chris@10
|
360 T1m = VADD(T1j, T1i);
|
Chris@10
|
361 TU = VADD(TQ, TT);
|
Chris@10
|
362 TZ = VSUB(TV, TY);
|
Chris@10
|
363 T10 = VMUL(LDK(KP707106781), VADD(TU, TZ));
|
Chris@10
|
364 T1l = VMUL(LDK(KP707106781), VSUB(TZ, TU));
|
Chris@10
|
365 ST(&(ri[WS(rs, 5)]), VSUB(TP, T10), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
366 ST(&(ii[WS(rs, 7)]), VSUB(T1m, T1l), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
367 ST(&(ri[WS(rs, 1)]), VADD(TP, T10), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
368 ST(&(ii[WS(rs, 3)]), VADD(T1l, T1m), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
369 }
|
Chris@10
|
370 }
|
Chris@10
|
371 }
|
Chris@10
|
372 }
|
Chris@10
|
373 }
|
Chris@10
|
374 VLEAVE();
|
Chris@10
|
375 }
|
Chris@10
|
376
|
Chris@10
|
377 static const tw_instr twinstr[] = {
|
Chris@10
|
378 VTW(0, 1),
|
Chris@10
|
379 VTW(0, 3),
|
Chris@10
|
380 VTW(0, 7),
|
Chris@10
|
381 {TW_NEXT, (2 * VL), 0}
|
Chris@10
|
382 };
|
Chris@10
|
383
|
Chris@10
|
384 static const ct_desc desc = { 8, XSIMD_STRING("t2sv_8"), twinstr, &GENUS, {56, 26, 18, 0}, 0, 0, 0 };
|
Chris@10
|
385
|
Chris@10
|
386 void XSIMD(codelet_t2sv_8) (planner *p) {
|
Chris@10
|
387 X(kdft_dit_register) (p, t2sv_8, &desc);
|
Chris@10
|
388 }
|
Chris@10
|
389 #endif /* HAVE_FMA */
|