annotate src/fftw-3.3.3/dft/simd/common/t2sv_8.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:39:26 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 8 -name t2sv_8 -include ts.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 74 FP additions, 50 FP multiplications,
Chris@10 32 * (or, 44 additions, 20 multiplications, 30 fused multiply/add),
Chris@10 33 * 64 stack variables, 1 constants, and 32 memory accesses
Chris@10 34 */
Chris@10 35 #include "ts.h"
Chris@10 36
Chris@10 37 static void t2sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 40 {
Chris@10 41 INT m;
Chris@10 42 for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 43 V T1m, T1l, T1k, T1u, T1n, T1o;
Chris@10 44 {
Chris@10 45 V T2, T3, Tl, Tn, T5, T6;
Chris@10 46 T2 = LDW(&(W[0]));
Chris@10 47 T3 = LDW(&(W[TWVL * 2]));
Chris@10 48 Tl = LDW(&(W[TWVL * 4]));
Chris@10 49 Tn = LDW(&(W[TWVL * 5]));
Chris@10 50 T5 = LDW(&(W[TWVL * 1]));
Chris@10 51 T6 = LDW(&(W[TWVL * 3]));
Chris@10 52 {
Chris@10 53 V T1, T1s, TK, T1r, Td, Tk, TG, TC, TY, Tu, TW, TL, TM, TO, TQ;
Chris@10 54 V Tx, Tz, TD, TH;
Chris@10 55 {
Chris@10 56 V T8, T4, Tm, Tr, Tc, Ta;
Chris@10 57 T1 = LD(&(ri[0]), ms, &(ri[0]));
Chris@10 58 T1s = LD(&(ii[0]), ms, &(ii[0]));
Chris@10 59 T8 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
Chris@10 60 T4 = VMUL(T2, T3);
Chris@10 61 Tm = VMUL(T2, Tl);
Chris@10 62 Tr = VMUL(T2, Tn);
Chris@10 63 Tc = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
Chris@10 64 Ta = VMUL(T2, T6);
Chris@10 65 {
Chris@10 66 V Tp, Tt, Tg, T7, Tf, To, Ts, Ti, Tb, Tj;
Chris@10 67 Tp = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
Chris@10 68 Tt = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
Chris@10 69 Tg = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
Chris@10 70 T7 = VFNMS(T5, T6, T4);
Chris@10 71 Tf = VFMA(T5, T6, T4);
Chris@10 72 To = VFMA(T5, Tn, Tm);
Chris@10 73 Ts = VFNMS(T5, Tl, Tr);
Chris@10 74 Ti = VFNMS(T5, T3, Ta);
Chris@10 75 Tb = VFMA(T5, T3, Ta);
Chris@10 76 Tj = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
Chris@10 77 TK = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
Chris@10 78 {
Chris@10 79 V T1q, T9, Th, TF;
Chris@10 80 T1q = VMUL(T7, Tc);
Chris@10 81 T9 = VMUL(T7, T8);
Chris@10 82 Th = VMUL(Tf, Tg);
Chris@10 83 TF = VMUL(Tf, Tn);
Chris@10 84 {
Chris@10 85 V TB, TX, Tq, TV;
Chris@10 86 TB = VMUL(Tf, Tl);
Chris@10 87 TX = VMUL(To, Tt);
Chris@10 88 Tq = VMUL(To, Tp);
Chris@10 89 TV = VMUL(Tf, Tj);
Chris@10 90 T1r = VFNMS(Tb, T8, T1q);
Chris@10 91 Td = VFMA(Tb, Tc, T9);
Chris@10 92 Tk = VFMA(Ti, Tj, Th);
Chris@10 93 TG = VFNMS(Ti, Tl, TF);
Chris@10 94 TC = VFMA(Ti, Tn, TB);
Chris@10 95 TY = VFNMS(Ts, Tp, TX);
Chris@10 96 Tu = VFMA(Ts, Tt, Tq);
Chris@10 97 TW = VFNMS(Ti, Tg, TV);
Chris@10 98 TL = VMUL(Tl, TK);
Chris@10 99 }
Chris@10 100 }
Chris@10 101 TM = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
Chris@10 102 TO = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
Chris@10 103 TQ = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
Chris@10 104 Tx = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
Chris@10 105 Tz = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
Chris@10 106 TD = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
Chris@10 107 TH = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
Chris@10 108 }
Chris@10 109 }
Chris@10 110 {
Chris@10 111 V Te, T1p, T1g, T10, TS, T18, T1d, T1t, T1x, T1y, Tv, TJ, T11, T16;
Chris@10 112 {
Chris@10 113 V TN, T1a, TR, T1c, TA, T13, TI, T15;
Chris@10 114 {
Chris@10 115 V TU, T19, TP, T1b, Ty, T12, TE, T14, TZ;
Chris@10 116 TU = VSUB(T1, Td);
Chris@10 117 Te = VADD(T1, Td);
Chris@10 118 TN = VFMA(Tn, TM, TL);
Chris@10 119 T19 = VMUL(Tl, TM);
Chris@10 120 TP = VMUL(T3, TO);
Chris@10 121 T1b = VMUL(T3, TQ);
Chris@10 122 Ty = VMUL(T2, Tx);
Chris@10 123 T12 = VMUL(T2, Tz);
Chris@10 124 TE = VMUL(TC, TD);
Chris@10 125 T14 = VMUL(TC, TH);
Chris@10 126 T1p = VADD(TW, TY);
Chris@10 127 TZ = VSUB(TW, TY);
Chris@10 128 T1a = VFNMS(Tn, TK, T19);
Chris@10 129 TR = VFMA(T6, TQ, TP);
Chris@10 130 T1c = VFNMS(T6, TO, T1b);
Chris@10 131 TA = VFMA(T5, Tz, Ty);
Chris@10 132 T13 = VFNMS(T5, Tx, T12);
Chris@10 133 TI = VFMA(TG, TH, TE);
Chris@10 134 T15 = VFNMS(TG, TD, T14);
Chris@10 135 T1g = VSUB(TU, TZ);
Chris@10 136 T10 = VADD(TU, TZ);
Chris@10 137 }
Chris@10 138 TS = VADD(TN, TR);
Chris@10 139 T18 = VSUB(TN, TR);
Chris@10 140 T1d = VSUB(T1a, T1c);
Chris@10 141 T1m = VADD(T1a, T1c);
Chris@10 142 T1t = VADD(T1r, T1s);
Chris@10 143 T1x = VSUB(T1s, T1r);
Chris@10 144 T1y = VSUB(Tk, Tu);
Chris@10 145 Tv = VADD(Tk, Tu);
Chris@10 146 TJ = VADD(TA, TI);
Chris@10 147 T11 = VSUB(TA, TI);
Chris@10 148 T16 = VSUB(T13, T15);
Chris@10 149 T1l = VADD(T13, T15);
Chris@10 150 }
Chris@10 151 {
Chris@10 152 V Tw, T1w, T1v, TT;
Chris@10 153 {
Chris@10 154 V T1i, T1e, T1B, T1z, T1h, T17;
Chris@10 155 T1i = VADD(T18, T1d);
Chris@10 156 T1e = VSUB(T18, T1d);
Chris@10 157 T1B = VADD(T1y, T1x);
Chris@10 158 T1z = VSUB(T1x, T1y);
Chris@10 159 T1h = VSUB(T16, T11);
Chris@10 160 T17 = VADD(T11, T16);
Chris@10 161 T1k = VSUB(Te, Tv);
Chris@10 162 Tw = VADD(Te, Tv);
Chris@10 163 {
Chris@10 164 V T1A, T1j, T1C, T1f;
Chris@10 165 T1A = VADD(T1h, T1i);
Chris@10 166 T1j = VSUB(T1h, T1i);
Chris@10 167 T1C = VSUB(T1e, T17);
Chris@10 168 T1f = VADD(T17, T1e);
Chris@10 169 T1w = VSUB(T1t, T1p);
Chris@10 170 T1u = VADD(T1p, T1t);
Chris@10 171 T1v = VSUB(TS, TJ);
Chris@10 172 TT = VADD(TJ, TS);
Chris@10 173 ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1A, T1z), ms, &(ii[WS(rs, 1)]));
Chris@10 174 ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1A, T1z), ms, &(ii[WS(rs, 1)]));
Chris@10 175 ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1j, T1g), ms, &(ri[WS(rs, 1)]));
Chris@10 176 ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1j, T1g), ms, &(ri[WS(rs, 1)]));
Chris@10 177 ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1C, T1B), ms, &(ii[WS(rs, 1)]));
Chris@10 178 ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1C, T1B), ms, &(ii[WS(rs, 1)]));
Chris@10 179 ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T1f, T10), ms, &(ri[WS(rs, 1)]));
Chris@10 180 ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1f, T10), ms, &(ri[WS(rs, 1)]));
Chris@10 181 }
Chris@10 182 }
Chris@10 183 ST(&(ri[WS(rs, 4)]), VSUB(Tw, TT), ms, &(ri[0]));
Chris@10 184 ST(&(ri[0]), VADD(Tw, TT), ms, &(ri[0]));
Chris@10 185 ST(&(ii[WS(rs, 6)]), VSUB(T1w, T1v), ms, &(ii[0]));
Chris@10 186 ST(&(ii[WS(rs, 2)]), VADD(T1v, T1w), ms, &(ii[0]));
Chris@10 187 }
Chris@10 188 }
Chris@10 189 }
Chris@10 190 }
Chris@10 191 T1n = VSUB(T1l, T1m);
Chris@10 192 T1o = VADD(T1l, T1m);
Chris@10 193 ST(&(ii[0]), VADD(T1o, T1u), ms, &(ii[0]));
Chris@10 194 ST(&(ii[WS(rs, 4)]), VSUB(T1u, T1o), ms, &(ii[0]));
Chris@10 195 ST(&(ri[WS(rs, 2)]), VADD(T1k, T1n), ms, &(ri[0]));
Chris@10 196 ST(&(ri[WS(rs, 6)]), VSUB(T1k, T1n), ms, &(ri[0]));
Chris@10 197 }
Chris@10 198 }
Chris@10 199 VLEAVE();
Chris@10 200 }
Chris@10 201
Chris@10 202 static const tw_instr twinstr[] = {
Chris@10 203 VTW(0, 1),
Chris@10 204 VTW(0, 3),
Chris@10 205 VTW(0, 7),
Chris@10 206 {TW_NEXT, (2 * VL), 0}
Chris@10 207 };
Chris@10 208
Chris@10 209 static const ct_desc desc = { 8, XSIMD_STRING("t2sv_8"), twinstr, &GENUS, {44, 20, 30, 0}, 0, 0, 0 };
Chris@10 210
Chris@10 211 void XSIMD(codelet_t2sv_8) (planner *p) {
Chris@10 212 X(kdft_dit_register) (p, t2sv_8, &desc);
Chris@10 213 }
Chris@10 214 #else /* HAVE_FMA */
Chris@10 215
Chris@10 216 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 8 -name t2sv_8 -include ts.h */
Chris@10 217
Chris@10 218 /*
Chris@10 219 * This function contains 74 FP additions, 44 FP multiplications,
Chris@10 220 * (or, 56 additions, 26 multiplications, 18 fused multiply/add),
Chris@10 221 * 42 stack variables, 1 constants, and 32 memory accesses
Chris@10 222 */
Chris@10 223 #include "ts.h"
Chris@10 224
Chris@10 225 static void t2sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 226 {
Chris@10 227 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 228 {
Chris@10 229 INT m;
Chris@10 230 for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 231 V T2, T5, T3, T6, T8, Tc, Tg, Ti, Tl, Tm, Tn, Tz, Tp, Tx;
Chris@10 232 {
Chris@10 233 V T4, Tb, T7, Ta;
Chris@10 234 T2 = LDW(&(W[0]));
Chris@10 235 T5 = LDW(&(W[TWVL * 1]));
Chris@10 236 T3 = LDW(&(W[TWVL * 2]));
Chris@10 237 T6 = LDW(&(W[TWVL * 3]));
Chris@10 238 T4 = VMUL(T2, T3);
Chris@10 239 Tb = VMUL(T5, T3);
Chris@10 240 T7 = VMUL(T5, T6);
Chris@10 241 Ta = VMUL(T2, T6);
Chris@10 242 T8 = VSUB(T4, T7);
Chris@10 243 Tc = VADD(Ta, Tb);
Chris@10 244 Tg = VADD(T4, T7);
Chris@10 245 Ti = VSUB(Ta, Tb);
Chris@10 246 Tl = LDW(&(W[TWVL * 4]));
Chris@10 247 Tm = LDW(&(W[TWVL * 5]));
Chris@10 248 Tn = VFMA(T2, Tl, VMUL(T5, Tm));
Chris@10 249 Tz = VFNMS(Ti, Tl, VMUL(Tg, Tm));
Chris@10 250 Tp = VFNMS(T5, Tl, VMUL(T2, Tm));
Chris@10 251 Tx = VFMA(Tg, Tl, VMUL(Ti, Tm));
Chris@10 252 }
Chris@10 253 {
Chris@10 254 V Tf, T1i, TL, T1d, TJ, T17, TV, TY, Ts, T1j, TO, T1a, TC, T16, TQ;
Chris@10 255 V TT;
Chris@10 256 {
Chris@10 257 V T1, T1c, Te, T1b, T9, Td;
Chris@10 258 T1 = LD(&(ri[0]), ms, &(ri[0]));
Chris@10 259 T1c = LD(&(ii[0]), ms, &(ii[0]));
Chris@10 260 T9 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
Chris@10 261 Td = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
Chris@10 262 Te = VFMA(T8, T9, VMUL(Tc, Td));
Chris@10 263 T1b = VFNMS(Tc, T9, VMUL(T8, Td));
Chris@10 264 Tf = VADD(T1, Te);
Chris@10 265 T1i = VSUB(T1c, T1b);
Chris@10 266 TL = VSUB(T1, Te);
Chris@10 267 T1d = VADD(T1b, T1c);
Chris@10 268 }
Chris@10 269 {
Chris@10 270 V TF, TW, TI, TX;
Chris@10 271 {
Chris@10 272 V TD, TE, TG, TH;
Chris@10 273 TD = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
Chris@10 274 TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
Chris@10 275 TF = VFMA(Tl, TD, VMUL(Tm, TE));
Chris@10 276 TW = VFNMS(Tm, TD, VMUL(Tl, TE));
Chris@10 277 TG = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
Chris@10 278 TH = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
Chris@10 279 TI = VFMA(T3, TG, VMUL(T6, TH));
Chris@10 280 TX = VFNMS(T6, TG, VMUL(T3, TH));
Chris@10 281 }
Chris@10 282 TJ = VADD(TF, TI);
Chris@10 283 T17 = VADD(TW, TX);
Chris@10 284 TV = VSUB(TF, TI);
Chris@10 285 TY = VSUB(TW, TX);
Chris@10 286 }
Chris@10 287 {
Chris@10 288 V Tk, TM, Tr, TN;
Chris@10 289 {
Chris@10 290 V Th, Tj, To, Tq;
Chris@10 291 Th = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
Chris@10 292 Tj = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
Chris@10 293 Tk = VFMA(Tg, Th, VMUL(Ti, Tj));
Chris@10 294 TM = VFNMS(Ti, Th, VMUL(Tg, Tj));
Chris@10 295 To = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
Chris@10 296 Tq = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
Chris@10 297 Tr = VFMA(Tn, To, VMUL(Tp, Tq));
Chris@10 298 TN = VFNMS(Tp, To, VMUL(Tn, Tq));
Chris@10 299 }
Chris@10 300 Ts = VADD(Tk, Tr);
Chris@10 301 T1j = VSUB(Tk, Tr);
Chris@10 302 TO = VSUB(TM, TN);
Chris@10 303 T1a = VADD(TM, TN);
Chris@10 304 }
Chris@10 305 {
Chris@10 306 V Tw, TR, TB, TS;
Chris@10 307 {
Chris@10 308 V Tu, Tv, Ty, TA;
Chris@10 309 Tu = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
Chris@10 310 Tv = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
Chris@10 311 Tw = VFMA(T2, Tu, VMUL(T5, Tv));
Chris@10 312 TR = VFNMS(T5, Tu, VMUL(T2, Tv));
Chris@10 313 Ty = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
Chris@10 314 TA = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
Chris@10 315 TB = VFMA(Tx, Ty, VMUL(Tz, TA));
Chris@10 316 TS = VFNMS(Tz, Ty, VMUL(Tx, TA));
Chris@10 317 }
Chris@10 318 TC = VADD(Tw, TB);
Chris@10 319 T16 = VADD(TR, TS);
Chris@10 320 TQ = VSUB(Tw, TB);
Chris@10 321 TT = VSUB(TR, TS);
Chris@10 322 }
Chris@10 323 {
Chris@10 324 V Tt, TK, T1f, T1g;
Chris@10 325 Tt = VADD(Tf, Ts);
Chris@10 326 TK = VADD(TC, TJ);
Chris@10 327 ST(&(ri[WS(rs, 4)]), VSUB(Tt, TK), ms, &(ri[0]));
Chris@10 328 ST(&(ri[0]), VADD(Tt, TK), ms, &(ri[0]));
Chris@10 329 {
Chris@10 330 V T19, T1e, T15, T18;
Chris@10 331 T19 = VADD(T16, T17);
Chris@10 332 T1e = VADD(T1a, T1d);
Chris@10 333 ST(&(ii[0]), VADD(T19, T1e), ms, &(ii[0]));
Chris@10 334 ST(&(ii[WS(rs, 4)]), VSUB(T1e, T19), ms, &(ii[0]));
Chris@10 335 T15 = VSUB(Tf, Ts);
Chris@10 336 T18 = VSUB(T16, T17);
Chris@10 337 ST(&(ri[WS(rs, 6)]), VSUB(T15, T18), ms, &(ri[0]));
Chris@10 338 ST(&(ri[WS(rs, 2)]), VADD(T15, T18), ms, &(ri[0]));
Chris@10 339 }
Chris@10 340 T1f = VSUB(TJ, TC);
Chris@10 341 T1g = VSUB(T1d, T1a);
Chris@10 342 ST(&(ii[WS(rs, 2)]), VADD(T1f, T1g), ms, &(ii[0]));
Chris@10 343 ST(&(ii[WS(rs, 6)]), VSUB(T1g, T1f), ms, &(ii[0]));
Chris@10 344 {
Chris@10 345 V T11, T1k, T14, T1h, T12, T13;
Chris@10 346 T11 = VSUB(TL, TO);
Chris@10 347 T1k = VSUB(T1i, T1j);
Chris@10 348 T12 = VSUB(TT, TQ);
Chris@10 349 T13 = VADD(TV, TY);
Chris@10 350 T14 = VMUL(LDK(KP707106781), VSUB(T12, T13));
Chris@10 351 T1h = VMUL(LDK(KP707106781), VADD(T12, T13));
Chris@10 352 ST(&(ri[WS(rs, 7)]), VSUB(T11, T14), ms, &(ri[WS(rs, 1)]));
Chris@10 353 ST(&(ii[WS(rs, 5)]), VSUB(T1k, T1h), ms, &(ii[WS(rs, 1)]));
Chris@10 354 ST(&(ri[WS(rs, 3)]), VADD(T11, T14), ms, &(ri[WS(rs, 1)]));
Chris@10 355 ST(&(ii[WS(rs, 1)]), VADD(T1h, T1k), ms, &(ii[WS(rs, 1)]));
Chris@10 356 }
Chris@10 357 {
Chris@10 358 V TP, T1m, T10, T1l, TU, TZ;
Chris@10 359 TP = VADD(TL, TO);
Chris@10 360 T1m = VADD(T1j, T1i);
Chris@10 361 TU = VADD(TQ, TT);
Chris@10 362 TZ = VSUB(TV, TY);
Chris@10 363 T10 = VMUL(LDK(KP707106781), VADD(TU, TZ));
Chris@10 364 T1l = VMUL(LDK(KP707106781), VSUB(TZ, TU));
Chris@10 365 ST(&(ri[WS(rs, 5)]), VSUB(TP, T10), ms, &(ri[WS(rs, 1)]));
Chris@10 366 ST(&(ii[WS(rs, 7)]), VSUB(T1m, T1l), ms, &(ii[WS(rs, 1)]));
Chris@10 367 ST(&(ri[WS(rs, 1)]), VADD(TP, T10), ms, &(ri[WS(rs, 1)]));
Chris@10 368 ST(&(ii[WS(rs, 3)]), VADD(T1l, T1m), ms, &(ii[WS(rs, 1)]));
Chris@10 369 }
Chris@10 370 }
Chris@10 371 }
Chris@10 372 }
Chris@10 373 }
Chris@10 374 VLEAVE();
Chris@10 375 }
Chris@10 376
Chris@10 377 static const tw_instr twinstr[] = {
Chris@10 378 VTW(0, 1),
Chris@10 379 VTW(0, 3),
Chris@10 380 VTW(0, 7),
Chris@10 381 {TW_NEXT, (2 * VL), 0}
Chris@10 382 };
Chris@10 383
Chris@10 384 static const ct_desc desc = { 8, XSIMD_STRING("t2sv_8"), twinstr, &GENUS, {56, 26, 18, 0}, 0, 0, 0 };
Chris@10 385
Chris@10 386 void XSIMD(codelet_t2sv_8) (planner *p) {
Chris@10 387 X(kdft_dit_register) (p, t2sv_8, &desc);
Chris@10 388 }
Chris@10 389 #endif /* HAVE_FMA */