Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:38:41 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 20 -name t2fv_20 -include t2f.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 123 FP additions, 88 FP multiplications,
|
Chris@10
|
32 * (or, 77 additions, 42 multiplications, 46 fused multiply/add),
|
Chris@10
|
33 * 68 stack variables, 4 constants, and 40 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "t2f.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t2fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
40 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
41 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
42 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
43 {
|
Chris@10
|
44 INT m;
|
Chris@10
|
45 R *x;
|
Chris@10
|
46 x = ri;
|
Chris@10
|
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 38)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(20, rs)) {
|
Chris@10
|
48 V T4, Tx, T1m, T1K, T1y, Tk, Tf, T16, T10, TT, T1O, T1w, T1L, T1p, T1M;
|
Chris@10
|
49 V T1s, TZ, TI, T1x, Tp;
|
Chris@10
|
50 {
|
Chris@10
|
51 V T1, Tv, T2, Tt;
|
Chris@10
|
52 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
53 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
54 T2 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
55 Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
56 {
|
Chris@10
|
57 V T9, T1n, TN, T1v, TS, Te, T1q, T1u, TE, TG, Tm, T1o, TC, Tn, T1r;
|
Chris@10
|
58 V TH, To;
|
Chris@10
|
59 {
|
Chris@10
|
60 V TP, TR, Ta, Tc;
|
Chris@10
|
61 {
|
Chris@10
|
62 V T5, T7, TJ, TL, T1k, T1l;
|
Chris@10
|
63 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
64 T7 = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
Chris@10
|
65 TJ = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
66 TL = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
67 {
|
Chris@10
|
68 V Tw, T3, Tu, T6, T8, TK, TM, TO, TQ;
|
Chris@10
|
69 TO = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
70 Tw = BYTWJ(&(W[TWVL * 28]), Tv);
|
Chris@10
|
71 T3 = BYTWJ(&(W[TWVL * 18]), T2);
|
Chris@10
|
72 Tu = BYTWJ(&(W[TWVL * 8]), Tt);
|
Chris@10
|
73 T6 = BYTWJ(&(W[TWVL * 6]), T5);
|
Chris@10
|
74 T8 = BYTWJ(&(W[TWVL * 26]), T7);
|
Chris@10
|
75 TK = BYTWJ(&(W[TWVL * 24]), TJ);
|
Chris@10
|
76 TM = BYTWJ(&(W[TWVL * 4]), TL);
|
Chris@10
|
77 TP = BYTWJ(&(W[TWVL * 32]), TO);
|
Chris@10
|
78 TQ = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
79 T4 = VSUB(T1, T3);
|
Chris@10
|
80 T1k = VADD(T1, T3);
|
Chris@10
|
81 Tx = VSUB(Tu, Tw);
|
Chris@10
|
82 T1l = VADD(Tu, Tw);
|
Chris@10
|
83 T9 = VSUB(T6, T8);
|
Chris@10
|
84 T1n = VADD(T6, T8);
|
Chris@10
|
85 TN = VSUB(TK, TM);
|
Chris@10
|
86 T1v = VADD(TK, TM);
|
Chris@10
|
87 TR = BYTWJ(&(W[TWVL * 12]), TQ);
|
Chris@10
|
88 }
|
Chris@10
|
89 Ta = LD(&(x[WS(rs, 16)]), ms, &(x[0]));
|
Chris@10
|
90 T1m = VSUB(T1k, T1l);
|
Chris@10
|
91 T1K = VADD(T1k, T1l);
|
Chris@10
|
92 Tc = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
93 }
|
Chris@10
|
94 {
|
Chris@10
|
95 V Tb, TA, Td, Th, Tj, Tz, Tg, Ti, Ty;
|
Chris@10
|
96 Tg = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
97 Ti = LD(&(x[WS(rs, 18)]), ms, &(x[0]));
|
Chris@10
|
98 Ty = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
99 TS = VSUB(TP, TR);
|
Chris@10
|
100 T1y = VADD(TP, TR);
|
Chris@10
|
101 Tb = BYTWJ(&(W[TWVL * 30]), Ta);
|
Chris@10
|
102 TA = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
103 Td = BYTWJ(&(W[TWVL * 10]), Tc);
|
Chris@10
|
104 Th = BYTWJ(&(W[TWVL * 14]), Tg);
|
Chris@10
|
105 Tj = BYTWJ(&(W[TWVL * 34]), Ti);
|
Chris@10
|
106 Tz = BYTWJ(&(W[TWVL * 16]), Ty);
|
Chris@10
|
107 {
|
Chris@10
|
108 V TD, TF, TB, Tl;
|
Chris@10
|
109 TD = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
110 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
111 Tl = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
Chris@10
|
112 TB = BYTWJ(&(W[TWVL * 36]), TA);
|
Chris@10
|
113 Te = VSUB(Tb, Td);
|
Chris@10
|
114 T1q = VADD(Tb, Td);
|
Chris@10
|
115 Tk = VSUB(Th, Tj);
|
Chris@10
|
116 T1u = VADD(Th, Tj);
|
Chris@10
|
117 TE = BYTWJ(&(W[0]), TD);
|
Chris@10
|
118 TG = BYTWJ(&(W[TWVL * 20]), TF);
|
Chris@10
|
119 Tm = BYTWJ(&(W[TWVL * 22]), Tl);
|
Chris@10
|
120 T1o = VADD(Tz, TB);
|
Chris@10
|
121 TC = VSUB(Tz, TB);
|
Chris@10
|
122 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
123 }
|
Chris@10
|
124 }
|
Chris@10
|
125 }
|
Chris@10
|
126 Tf = VADD(T9, Te);
|
Chris@10
|
127 T16 = VSUB(T9, Te);
|
Chris@10
|
128 T10 = VSUB(TS, TN);
|
Chris@10
|
129 TT = VADD(TN, TS);
|
Chris@10
|
130 T1r = VADD(TE, TG);
|
Chris@10
|
131 TH = VSUB(TE, TG);
|
Chris@10
|
132 T1O = VADD(T1u, T1v);
|
Chris@10
|
133 T1w = VSUB(T1u, T1v);
|
Chris@10
|
134 To = BYTWJ(&(W[TWVL * 2]), Tn);
|
Chris@10
|
135 T1L = VADD(T1n, T1o);
|
Chris@10
|
136 T1p = VSUB(T1n, T1o);
|
Chris@10
|
137 T1M = VADD(T1q, T1r);
|
Chris@10
|
138 T1s = VSUB(T1q, T1r);
|
Chris@10
|
139 TZ = VSUB(TH, TC);
|
Chris@10
|
140 TI = VADD(TC, TH);
|
Chris@10
|
141 T1x = VADD(Tm, To);
|
Chris@10
|
142 Tp = VSUB(Tm, To);
|
Chris@10
|
143 }
|
Chris@10
|
144 }
|
Chris@10
|
145 {
|
Chris@10
|
146 V T1V, T1N, T14, T1d, T11, T1G, T1t, T1z, T1P, Tq, T17, T13, TV, TU;
|
Chris@10
|
147 T1V = VSUB(T1L, T1M);
|
Chris@10
|
148 T1N = VADD(T1L, T1M);
|
Chris@10
|
149 T14 = VSUB(TT, TI);
|
Chris@10
|
150 TU = VADD(TI, TT);
|
Chris@10
|
151 T1d = VFNMS(LDK(KP618033988), TZ, T10);
|
Chris@10
|
152 T11 = VFMA(LDK(KP618033988), T10, TZ);
|
Chris@10
|
153 T1G = VSUB(T1p, T1s);
|
Chris@10
|
154 T1t = VADD(T1p, T1s);
|
Chris@10
|
155 T1z = VSUB(T1x, T1y);
|
Chris@10
|
156 T1P = VADD(T1x, T1y);
|
Chris@10
|
157 Tq = VADD(Tk, Tp);
|
Chris@10
|
158 T17 = VSUB(Tk, Tp);
|
Chris@10
|
159 T13 = VFNMS(LDK(KP250000000), TU, Tx);
|
Chris@10
|
160 TV = VADD(Tx, TU);
|
Chris@10
|
161 {
|
Chris@10
|
162 V T1J, T1H, T1D, T1Z, T1X, T1T, T1h, T1j, T1b, T19, T1C, T1S, T1c, TY, T1F;
|
Chris@10
|
163 V T1A;
|
Chris@10
|
164 T1F = VSUB(T1w, T1z);
|
Chris@10
|
165 T1A = VADD(T1w, T1z);
|
Chris@10
|
166 {
|
Chris@10
|
167 V T1W, T1Q, TX, Tr;
|
Chris@10
|
168 T1W = VSUB(T1O, T1P);
|
Chris@10
|
169 T1Q = VADD(T1O, T1P);
|
Chris@10
|
170 TX = VSUB(Tf, Tq);
|
Chris@10
|
171 Tr = VADD(Tf, Tq);
|
Chris@10
|
172 {
|
Chris@10
|
173 V T1g, T18, T1f, T15;
|
Chris@10
|
174 T1g = VFNMS(LDK(KP618033988), T16, T17);
|
Chris@10
|
175 T18 = VFMA(LDK(KP618033988), T17, T16);
|
Chris@10
|
176 T1f = VFMA(LDK(KP559016994), T14, T13);
|
Chris@10
|
177 T15 = VFNMS(LDK(KP559016994), T14, T13);
|
Chris@10
|
178 T1J = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1F, T1G));
|
Chris@10
|
179 T1H = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1G, T1F));
|
Chris@10
|
180 {
|
Chris@10
|
181 V T1B, T1R, TW, Ts;
|
Chris@10
|
182 T1B = VADD(T1t, T1A);
|
Chris@10
|
183 T1D = VSUB(T1t, T1A);
|
Chris@10
|
184 T1Z = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1V, T1W));
|
Chris@10
|
185 T1X = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1W, T1V));
|
Chris@10
|
186 T1R = VADD(T1N, T1Q);
|
Chris@10
|
187 T1T = VSUB(T1N, T1Q);
|
Chris@10
|
188 TW = VFNMS(LDK(KP250000000), Tr, T4);
|
Chris@10
|
189 Ts = VADD(T4, Tr);
|
Chris@10
|
190 T1h = VFNMS(LDK(KP951056516), T1g, T1f);
|
Chris@10
|
191 T1j = VFMA(LDK(KP951056516), T1g, T1f);
|
Chris@10
|
192 T1b = VFNMS(LDK(KP951056516), T18, T15);
|
Chris@10
|
193 T19 = VFMA(LDK(KP951056516), T18, T15);
|
Chris@10
|
194 ST(&(x[WS(rs, 10)]), VADD(T1m, T1B), ms, &(x[0]));
|
Chris@10
|
195 T1C = VFNMS(LDK(KP250000000), T1B, T1m);
|
Chris@10
|
196 ST(&(x[0]), VADD(T1K, T1R), ms, &(x[0]));
|
Chris@10
|
197 T1S = VFNMS(LDK(KP250000000), T1R, T1K);
|
Chris@10
|
198 T1c = VFNMS(LDK(KP559016994), TX, TW);
|
Chris@10
|
199 TY = VFMA(LDK(KP559016994), TX, TW);
|
Chris@10
|
200 ST(&(x[WS(rs, 15)]), VFMAI(TV, Ts), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
201 ST(&(x[WS(rs, 5)]), VFNMSI(TV, Ts), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
202 }
|
Chris@10
|
203 }
|
Chris@10
|
204 }
|
Chris@10
|
205 {
|
Chris@10
|
206 V T1E, T1I, T1U, T1Y;
|
Chris@10
|
207 T1E = VFNMS(LDK(KP559016994), T1D, T1C);
|
Chris@10
|
208 T1I = VFMA(LDK(KP559016994), T1D, T1C);
|
Chris@10
|
209 T1U = VFMA(LDK(KP559016994), T1T, T1S);
|
Chris@10
|
210 T1Y = VFNMS(LDK(KP559016994), T1T, T1S);
|
Chris@10
|
211 {
|
Chris@10
|
212 V T1e, T1i, T1a, T12;
|
Chris@10
|
213 T1e = VFNMS(LDK(KP951056516), T1d, T1c);
|
Chris@10
|
214 T1i = VFMA(LDK(KP951056516), T1d, T1c);
|
Chris@10
|
215 T1a = VFNMS(LDK(KP951056516), T11, TY);
|
Chris@10
|
216 T12 = VFMA(LDK(KP951056516), T11, TY);
|
Chris@10
|
217 ST(&(x[WS(rs, 18)]), VFNMSI(T1H, T1E), ms, &(x[0]));
|
Chris@10
|
218 ST(&(x[WS(rs, 2)]), VFMAI(T1H, T1E), ms, &(x[0]));
|
Chris@10
|
219 ST(&(x[WS(rs, 14)]), VFMAI(T1J, T1I), ms, &(x[0]));
|
Chris@10
|
220 ST(&(x[WS(rs, 6)]), VFNMSI(T1J, T1I), ms, &(x[0]));
|
Chris@10
|
221 ST(&(x[WS(rs, 16)]), VFNMSI(T1X, T1U), ms, &(x[0]));
|
Chris@10
|
222 ST(&(x[WS(rs, 4)]), VFMAI(T1X, T1U), ms, &(x[0]));
|
Chris@10
|
223 ST(&(x[WS(rs, 12)]), VFMAI(T1Z, T1Y), ms, &(x[0]));
|
Chris@10
|
224 ST(&(x[WS(rs, 8)]), VFNMSI(T1Z, T1Y), ms, &(x[0]));
|
Chris@10
|
225 ST(&(x[WS(rs, 3)]), VFMAI(T1h, T1e), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
226 ST(&(x[WS(rs, 17)]), VFNMSI(T1h, T1e), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
227 ST(&(x[WS(rs, 7)]), VFMAI(T1j, T1i), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
228 ST(&(x[WS(rs, 13)]), VFNMSI(T1j, T1i), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
229 ST(&(x[WS(rs, 11)]), VFMAI(T1b, T1a), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
230 ST(&(x[WS(rs, 9)]), VFNMSI(T1b, T1a), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
231 ST(&(x[WS(rs, 19)]), VFMAI(T19, T12), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
232 ST(&(x[WS(rs, 1)]), VFNMSI(T19, T12), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
233 }
|
Chris@10
|
234 }
|
Chris@10
|
235 }
|
Chris@10
|
236 }
|
Chris@10
|
237 }
|
Chris@10
|
238 }
|
Chris@10
|
239 VLEAVE();
|
Chris@10
|
240 }
|
Chris@10
|
241
|
Chris@10
|
242 static const tw_instr twinstr[] = {
|
Chris@10
|
243 VTW(0, 1),
|
Chris@10
|
244 VTW(0, 2),
|
Chris@10
|
245 VTW(0, 3),
|
Chris@10
|
246 VTW(0, 4),
|
Chris@10
|
247 VTW(0, 5),
|
Chris@10
|
248 VTW(0, 6),
|
Chris@10
|
249 VTW(0, 7),
|
Chris@10
|
250 VTW(0, 8),
|
Chris@10
|
251 VTW(0, 9),
|
Chris@10
|
252 VTW(0, 10),
|
Chris@10
|
253 VTW(0, 11),
|
Chris@10
|
254 VTW(0, 12),
|
Chris@10
|
255 VTW(0, 13),
|
Chris@10
|
256 VTW(0, 14),
|
Chris@10
|
257 VTW(0, 15),
|
Chris@10
|
258 VTW(0, 16),
|
Chris@10
|
259 VTW(0, 17),
|
Chris@10
|
260 VTW(0, 18),
|
Chris@10
|
261 VTW(0, 19),
|
Chris@10
|
262 {TW_NEXT, VL, 0}
|
Chris@10
|
263 };
|
Chris@10
|
264
|
Chris@10
|
265 static const ct_desc desc = { 20, XSIMD_STRING("t2fv_20"), twinstr, &GENUS, {77, 42, 46, 0}, 0, 0, 0 };
|
Chris@10
|
266
|
Chris@10
|
267 void XSIMD(codelet_t2fv_20) (planner *p) {
|
Chris@10
|
268 X(kdft_dit_register) (p, t2fv_20, &desc);
|
Chris@10
|
269 }
|
Chris@10
|
270 #else /* HAVE_FMA */
|
Chris@10
|
271
|
Chris@10
|
272 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 20 -name t2fv_20 -include t2f.h */
|
Chris@10
|
273
|
Chris@10
|
274 /*
|
Chris@10
|
275 * This function contains 123 FP additions, 62 FP multiplications,
|
Chris@10
|
276 * (or, 111 additions, 50 multiplications, 12 fused multiply/add),
|
Chris@10
|
277 * 54 stack variables, 4 constants, and 40 memory accesses
|
Chris@10
|
278 */
|
Chris@10
|
279 #include "t2f.h"
|
Chris@10
|
280
|
Chris@10
|
281 static void t2fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
282 {
|
Chris@10
|
283 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
Chris@10
|
284 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
285 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
286 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
287 {
|
Chris@10
|
288 INT m;
|
Chris@10
|
289 R *x;
|
Chris@10
|
290 x = ri;
|
Chris@10
|
291 for (m = mb, W = W + (mb * ((TWVL / VL) * 38)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(20, rs)) {
|
Chris@10
|
292 V T4, Tx, T1B, T1U, TZ, T16, T17, T10, Tf, Tq, Tr, T1N, T1O, T1S, T1t;
|
Chris@10
|
293 V T1w, T1C, TI, TT, TU, T1K, T1L, T1R, T1m, T1p, T1D, Ts, TV;
|
Chris@10
|
294 {
|
Chris@10
|
295 V T1, Tw, T3, Tu, Tv, T2, Tt, T1z, T1A;
|
Chris@10
|
296 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
297 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
298 Tw = BYTWJ(&(W[TWVL * 28]), Tv);
|
Chris@10
|
299 T2 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
300 T3 = BYTWJ(&(W[TWVL * 18]), T2);
|
Chris@10
|
301 Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
302 Tu = BYTWJ(&(W[TWVL * 8]), Tt);
|
Chris@10
|
303 T4 = VSUB(T1, T3);
|
Chris@10
|
304 Tx = VSUB(Tu, Tw);
|
Chris@10
|
305 T1z = VADD(T1, T3);
|
Chris@10
|
306 T1A = VADD(Tu, Tw);
|
Chris@10
|
307 T1B = VSUB(T1z, T1A);
|
Chris@10
|
308 T1U = VADD(T1z, T1A);
|
Chris@10
|
309 }
|
Chris@10
|
310 {
|
Chris@10
|
311 V T9, T1r, TN, T1l, TS, T1o, Te, T1u, Tk, T1k, TC, T1s, TH, T1v, Tp;
|
Chris@10
|
312 V T1n;
|
Chris@10
|
313 {
|
Chris@10
|
314 V T6, T8, T5, T7;
|
Chris@10
|
315 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
316 T6 = BYTWJ(&(W[TWVL * 6]), T5);
|
Chris@10
|
317 T7 = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
Chris@10
|
318 T8 = BYTWJ(&(W[TWVL * 26]), T7);
|
Chris@10
|
319 T9 = VSUB(T6, T8);
|
Chris@10
|
320 T1r = VADD(T6, T8);
|
Chris@10
|
321 }
|
Chris@10
|
322 {
|
Chris@10
|
323 V TK, TM, TJ, TL;
|
Chris@10
|
324 TJ = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
325 TK = BYTWJ(&(W[TWVL * 24]), TJ);
|
Chris@10
|
326 TL = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
327 TM = BYTWJ(&(W[TWVL * 4]), TL);
|
Chris@10
|
328 TN = VSUB(TK, TM);
|
Chris@10
|
329 T1l = VADD(TK, TM);
|
Chris@10
|
330 }
|
Chris@10
|
331 {
|
Chris@10
|
332 V TP, TR, TO, TQ;
|
Chris@10
|
333 TO = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
334 TP = BYTWJ(&(W[TWVL * 32]), TO);
|
Chris@10
|
335 TQ = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
336 TR = BYTWJ(&(W[TWVL * 12]), TQ);
|
Chris@10
|
337 TS = VSUB(TP, TR);
|
Chris@10
|
338 T1o = VADD(TP, TR);
|
Chris@10
|
339 }
|
Chris@10
|
340 {
|
Chris@10
|
341 V Tb, Td, Ta, Tc;
|
Chris@10
|
342 Ta = LD(&(x[WS(rs, 16)]), ms, &(x[0]));
|
Chris@10
|
343 Tb = BYTWJ(&(W[TWVL * 30]), Ta);
|
Chris@10
|
344 Tc = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
345 Td = BYTWJ(&(W[TWVL * 10]), Tc);
|
Chris@10
|
346 Te = VSUB(Tb, Td);
|
Chris@10
|
347 T1u = VADD(Tb, Td);
|
Chris@10
|
348 }
|
Chris@10
|
349 {
|
Chris@10
|
350 V Th, Tj, Tg, Ti;
|
Chris@10
|
351 Tg = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
352 Th = BYTWJ(&(W[TWVL * 14]), Tg);
|
Chris@10
|
353 Ti = LD(&(x[WS(rs, 18)]), ms, &(x[0]));
|
Chris@10
|
354 Tj = BYTWJ(&(W[TWVL * 34]), Ti);
|
Chris@10
|
355 Tk = VSUB(Th, Tj);
|
Chris@10
|
356 T1k = VADD(Th, Tj);
|
Chris@10
|
357 }
|
Chris@10
|
358 {
|
Chris@10
|
359 V Tz, TB, Ty, TA;
|
Chris@10
|
360 Ty = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
361 Tz = BYTWJ(&(W[TWVL * 16]), Ty);
|
Chris@10
|
362 TA = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
363 TB = BYTWJ(&(W[TWVL * 36]), TA);
|
Chris@10
|
364 TC = VSUB(Tz, TB);
|
Chris@10
|
365 T1s = VADD(Tz, TB);
|
Chris@10
|
366 }
|
Chris@10
|
367 {
|
Chris@10
|
368 V TE, TG, TD, TF;
|
Chris@10
|
369 TD = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
370 TE = BYTWJ(&(W[0]), TD);
|
Chris@10
|
371 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
372 TG = BYTWJ(&(W[TWVL * 20]), TF);
|
Chris@10
|
373 TH = VSUB(TE, TG);
|
Chris@10
|
374 T1v = VADD(TE, TG);
|
Chris@10
|
375 }
|
Chris@10
|
376 {
|
Chris@10
|
377 V Tm, To, Tl, Tn;
|
Chris@10
|
378 Tl = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
Chris@10
|
379 Tm = BYTWJ(&(W[TWVL * 22]), Tl);
|
Chris@10
|
380 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
381 To = BYTWJ(&(W[TWVL * 2]), Tn);
|
Chris@10
|
382 Tp = VSUB(Tm, To);
|
Chris@10
|
383 T1n = VADD(Tm, To);
|
Chris@10
|
384 }
|
Chris@10
|
385 TZ = VSUB(TH, TC);
|
Chris@10
|
386 T16 = VSUB(T9, Te);
|
Chris@10
|
387 T17 = VSUB(Tk, Tp);
|
Chris@10
|
388 T10 = VSUB(TS, TN);
|
Chris@10
|
389 Tf = VADD(T9, Te);
|
Chris@10
|
390 Tq = VADD(Tk, Tp);
|
Chris@10
|
391 Tr = VADD(Tf, Tq);
|
Chris@10
|
392 T1N = VADD(T1k, T1l);
|
Chris@10
|
393 T1O = VADD(T1n, T1o);
|
Chris@10
|
394 T1S = VADD(T1N, T1O);
|
Chris@10
|
395 T1t = VSUB(T1r, T1s);
|
Chris@10
|
396 T1w = VSUB(T1u, T1v);
|
Chris@10
|
397 T1C = VADD(T1t, T1w);
|
Chris@10
|
398 TI = VADD(TC, TH);
|
Chris@10
|
399 TT = VADD(TN, TS);
|
Chris@10
|
400 TU = VADD(TI, TT);
|
Chris@10
|
401 T1K = VADD(T1r, T1s);
|
Chris@10
|
402 T1L = VADD(T1u, T1v);
|
Chris@10
|
403 T1R = VADD(T1K, T1L);
|
Chris@10
|
404 T1m = VSUB(T1k, T1l);
|
Chris@10
|
405 T1p = VSUB(T1n, T1o);
|
Chris@10
|
406 T1D = VADD(T1m, T1p);
|
Chris@10
|
407 }
|
Chris@10
|
408 Ts = VADD(T4, Tr);
|
Chris@10
|
409 TV = VBYI(VADD(Tx, TU));
|
Chris@10
|
410 ST(&(x[WS(rs, 5)]), VSUB(Ts, TV), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
411 ST(&(x[WS(rs, 15)]), VADD(Ts, TV), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
412 {
|
Chris@10
|
413 V T1T, T1V, T1W, T1Q, T1Z, T1M, T1P, T1Y, T1X;
|
Chris@10
|
414 T1T = VMUL(LDK(KP559016994), VSUB(T1R, T1S));
|
Chris@10
|
415 T1V = VADD(T1R, T1S);
|
Chris@10
|
416 T1W = VFNMS(LDK(KP250000000), T1V, T1U);
|
Chris@10
|
417 T1M = VSUB(T1K, T1L);
|
Chris@10
|
418 T1P = VSUB(T1N, T1O);
|
Chris@10
|
419 T1Q = VBYI(VFMA(LDK(KP951056516), T1M, VMUL(LDK(KP587785252), T1P)));
|
Chris@10
|
420 T1Z = VBYI(VFNMS(LDK(KP587785252), T1M, VMUL(LDK(KP951056516), T1P)));
|
Chris@10
|
421 ST(&(x[0]), VADD(T1U, T1V), ms, &(x[0]));
|
Chris@10
|
422 T1Y = VSUB(T1W, T1T);
|
Chris@10
|
423 ST(&(x[WS(rs, 8)]), VSUB(T1Y, T1Z), ms, &(x[0]));
|
Chris@10
|
424 ST(&(x[WS(rs, 12)]), VADD(T1Z, T1Y), ms, &(x[0]));
|
Chris@10
|
425 T1X = VADD(T1T, T1W);
|
Chris@10
|
426 ST(&(x[WS(rs, 4)]), VADD(T1Q, T1X), ms, &(x[0]));
|
Chris@10
|
427 ST(&(x[WS(rs, 16)]), VSUB(T1X, T1Q), ms, &(x[0]));
|
Chris@10
|
428 }
|
Chris@10
|
429 {
|
Chris@10
|
430 V T1G, T1E, T1F, T1y, T1J, T1q, T1x, T1I, T1H;
|
Chris@10
|
431 T1G = VMUL(LDK(KP559016994), VSUB(T1C, T1D));
|
Chris@10
|
432 T1E = VADD(T1C, T1D);
|
Chris@10
|
433 T1F = VFNMS(LDK(KP250000000), T1E, T1B);
|
Chris@10
|
434 T1q = VSUB(T1m, T1p);
|
Chris@10
|
435 T1x = VSUB(T1t, T1w);
|
Chris@10
|
436 T1y = VBYI(VFNMS(LDK(KP587785252), T1x, VMUL(LDK(KP951056516), T1q)));
|
Chris@10
|
437 T1J = VBYI(VFMA(LDK(KP951056516), T1x, VMUL(LDK(KP587785252), T1q)));
|
Chris@10
|
438 ST(&(x[WS(rs, 10)]), VADD(T1B, T1E), ms, &(x[0]));
|
Chris@10
|
439 T1I = VADD(T1G, T1F);
|
Chris@10
|
440 ST(&(x[WS(rs, 6)]), VSUB(T1I, T1J), ms, &(x[0]));
|
Chris@10
|
441 ST(&(x[WS(rs, 14)]), VADD(T1J, T1I), ms, &(x[0]));
|
Chris@10
|
442 T1H = VSUB(T1F, T1G);
|
Chris@10
|
443 ST(&(x[WS(rs, 2)]), VADD(T1y, T1H), ms, &(x[0]));
|
Chris@10
|
444 ST(&(x[WS(rs, 18)]), VSUB(T1H, T1y), ms, &(x[0]));
|
Chris@10
|
445 }
|
Chris@10
|
446 {
|
Chris@10
|
447 V T11, T18, T1g, T1d, T15, T1f, TY, T1c;
|
Chris@10
|
448 T11 = VFMA(LDK(KP951056516), TZ, VMUL(LDK(KP587785252), T10));
|
Chris@10
|
449 T18 = VFMA(LDK(KP951056516), T16, VMUL(LDK(KP587785252), T17));
|
Chris@10
|
450 T1g = VFNMS(LDK(KP587785252), T16, VMUL(LDK(KP951056516), T17));
|
Chris@10
|
451 T1d = VFNMS(LDK(KP587785252), TZ, VMUL(LDK(KP951056516), T10));
|
Chris@10
|
452 {
|
Chris@10
|
453 V T13, T14, TW, TX;
|
Chris@10
|
454 T13 = VFMS(LDK(KP250000000), TU, Tx);
|
Chris@10
|
455 T14 = VMUL(LDK(KP559016994), VSUB(TT, TI));
|
Chris@10
|
456 T15 = VADD(T13, T14);
|
Chris@10
|
457 T1f = VSUB(T14, T13);
|
Chris@10
|
458 TW = VMUL(LDK(KP559016994), VSUB(Tf, Tq));
|
Chris@10
|
459 TX = VFNMS(LDK(KP250000000), Tr, T4);
|
Chris@10
|
460 TY = VADD(TW, TX);
|
Chris@10
|
461 T1c = VSUB(TX, TW);
|
Chris@10
|
462 }
|
Chris@10
|
463 {
|
Chris@10
|
464 V T12, T19, T1i, T1j;
|
Chris@10
|
465 T12 = VADD(TY, T11);
|
Chris@10
|
466 T19 = VBYI(VSUB(T15, T18));
|
Chris@10
|
467 ST(&(x[WS(rs, 19)]), VSUB(T12, T19), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
468 ST(&(x[WS(rs, 1)]), VADD(T12, T19), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
469 T1i = VADD(T1c, T1d);
|
Chris@10
|
470 T1j = VBYI(VADD(T1g, T1f));
|
Chris@10
|
471 ST(&(x[WS(rs, 13)]), VSUB(T1i, T1j), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
472 ST(&(x[WS(rs, 7)]), VADD(T1i, T1j), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
473 }
|
Chris@10
|
474 {
|
Chris@10
|
475 V T1a, T1b, T1e, T1h;
|
Chris@10
|
476 T1a = VSUB(TY, T11);
|
Chris@10
|
477 T1b = VBYI(VADD(T18, T15));
|
Chris@10
|
478 ST(&(x[WS(rs, 11)]), VSUB(T1a, T1b), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
479 ST(&(x[WS(rs, 9)]), VADD(T1a, T1b), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
480 T1e = VSUB(T1c, T1d);
|
Chris@10
|
481 T1h = VBYI(VSUB(T1f, T1g));
|
Chris@10
|
482 ST(&(x[WS(rs, 17)]), VSUB(T1e, T1h), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
483 ST(&(x[WS(rs, 3)]), VADD(T1e, T1h), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
484 }
|
Chris@10
|
485 }
|
Chris@10
|
486 }
|
Chris@10
|
487 }
|
Chris@10
|
488 VLEAVE();
|
Chris@10
|
489 }
|
Chris@10
|
490
|
Chris@10
|
491 static const tw_instr twinstr[] = {
|
Chris@10
|
492 VTW(0, 1),
|
Chris@10
|
493 VTW(0, 2),
|
Chris@10
|
494 VTW(0, 3),
|
Chris@10
|
495 VTW(0, 4),
|
Chris@10
|
496 VTW(0, 5),
|
Chris@10
|
497 VTW(0, 6),
|
Chris@10
|
498 VTW(0, 7),
|
Chris@10
|
499 VTW(0, 8),
|
Chris@10
|
500 VTW(0, 9),
|
Chris@10
|
501 VTW(0, 10),
|
Chris@10
|
502 VTW(0, 11),
|
Chris@10
|
503 VTW(0, 12),
|
Chris@10
|
504 VTW(0, 13),
|
Chris@10
|
505 VTW(0, 14),
|
Chris@10
|
506 VTW(0, 15),
|
Chris@10
|
507 VTW(0, 16),
|
Chris@10
|
508 VTW(0, 17),
|
Chris@10
|
509 VTW(0, 18),
|
Chris@10
|
510 VTW(0, 19),
|
Chris@10
|
511 {TW_NEXT, VL, 0}
|
Chris@10
|
512 };
|
Chris@10
|
513
|
Chris@10
|
514 static const ct_desc desc = { 20, XSIMD_STRING("t2fv_20"), twinstr, &GENUS, {111, 50, 12, 0}, 0, 0, 0 };
|
Chris@10
|
515
|
Chris@10
|
516 void XSIMD(codelet_t2fv_20) (planner *p) {
|
Chris@10
|
517 X(kdft_dit_register) (p, t2fv_20, &desc);
|
Chris@10
|
518 }
|
Chris@10
|
519 #endif /* HAVE_FMA */
|