annotate src/fftw-3.3.3/dft/simd/common/t2bv_5.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:39:14 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name t2bv_5 -include t2b.h -sign 1 */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 20 FP additions, 19 FP multiplications,
Chris@10 32 * (or, 11 additions, 10 multiplications, 9 fused multiply/add),
Chris@10 33 * 26 stack variables, 4 constants, and 10 memory accesses
Chris@10 34 */
Chris@10 35 #include "t2b.h"
Chris@10 36
Chris@10 37 static void t2bv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 43 {
Chris@10 44 INT m;
Chris@10 45 R *x;
Chris@10 46 x = ii;
Chris@10 47 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(5, rs)) {
Chris@10 48 V T1, T2, T9, T4, T7;
Chris@10 49 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 50 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 51 T9 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 52 T4 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 53 T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 54 {
Chris@10 55 V T3, Ta, T5, T8;
Chris@10 56 T3 = BYTW(&(W[0]), T2);
Chris@10 57 Ta = BYTW(&(W[TWVL * 4]), T9);
Chris@10 58 T5 = BYTW(&(W[TWVL * 6]), T4);
Chris@10 59 T8 = BYTW(&(W[TWVL * 2]), T7);
Chris@10 60 {
Chris@10 61 V T6, Tg, Tb, Th;
Chris@10 62 T6 = VADD(T3, T5);
Chris@10 63 Tg = VSUB(T3, T5);
Chris@10 64 Tb = VADD(T8, Ta);
Chris@10 65 Th = VSUB(T8, Ta);
Chris@10 66 {
Chris@10 67 V Te, Tc, Tk, Ti, Td, Tj, Tf;
Chris@10 68 Te = VSUB(T6, Tb);
Chris@10 69 Tc = VADD(T6, Tb);
Chris@10 70 Tk = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tg, Th));
Chris@10 71 Ti = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Th, Tg));
Chris@10 72 Td = VFNMS(LDK(KP250000000), Tc, T1);
Chris@10 73 ST(&(x[0]), VADD(T1, Tc), ms, &(x[0]));
Chris@10 74 Tj = VFNMS(LDK(KP559016994), Te, Td);
Chris@10 75 Tf = VFMA(LDK(KP559016994), Te, Td);
Chris@10 76 ST(&(x[WS(rs, 2)]), VFNMSI(Tk, Tj), ms, &(x[0]));
Chris@10 77 ST(&(x[WS(rs, 3)]), VFMAI(Tk, Tj), ms, &(x[WS(rs, 1)]));
Chris@10 78 ST(&(x[WS(rs, 4)]), VFNMSI(Ti, Tf), ms, &(x[0]));
Chris@10 79 ST(&(x[WS(rs, 1)]), VFMAI(Ti, Tf), ms, &(x[WS(rs, 1)]));
Chris@10 80 }
Chris@10 81 }
Chris@10 82 }
Chris@10 83 }
Chris@10 84 }
Chris@10 85 VLEAVE();
Chris@10 86 }
Chris@10 87
Chris@10 88 static const tw_instr twinstr[] = {
Chris@10 89 VTW(0, 1),
Chris@10 90 VTW(0, 2),
Chris@10 91 VTW(0, 3),
Chris@10 92 VTW(0, 4),
Chris@10 93 {TW_NEXT, VL, 0}
Chris@10 94 };
Chris@10 95
Chris@10 96 static const ct_desc desc = { 5, XSIMD_STRING("t2bv_5"), twinstr, &GENUS, {11, 10, 9, 0}, 0, 0, 0 };
Chris@10 97
Chris@10 98 void XSIMD(codelet_t2bv_5) (planner *p) {
Chris@10 99 X(kdft_dit_register) (p, t2bv_5, &desc);
Chris@10 100 }
Chris@10 101 #else /* HAVE_FMA */
Chris@10 102
Chris@10 103 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name t2bv_5 -include t2b.h -sign 1 */
Chris@10 104
Chris@10 105 /*
Chris@10 106 * This function contains 20 FP additions, 14 FP multiplications,
Chris@10 107 * (or, 17 additions, 11 multiplications, 3 fused multiply/add),
Chris@10 108 * 20 stack variables, 4 constants, and 10 memory accesses
Chris@10 109 */
Chris@10 110 #include "t2b.h"
Chris@10 111
Chris@10 112 static void t2bv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 113 {
Chris@10 114 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 115 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 116 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 117 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 118 {
Chris@10 119 INT m;
Chris@10 120 R *x;
Chris@10 121 x = ii;
Chris@10 122 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(5, rs)) {
Chris@10 123 V Tf, T5, Ta, Tc, Td, Tg;
Chris@10 124 Tf = LD(&(x[0]), ms, &(x[0]));
Chris@10 125 {
Chris@10 126 V T2, T9, T4, T7;
Chris@10 127 {
Chris@10 128 V T1, T8, T3, T6;
Chris@10 129 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 130 T2 = BYTW(&(W[0]), T1);
Chris@10 131 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 132 T9 = BYTW(&(W[TWVL * 4]), T8);
Chris@10 133 T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 134 T4 = BYTW(&(W[TWVL * 6]), T3);
Chris@10 135 T6 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 136 T7 = BYTW(&(W[TWVL * 2]), T6);
Chris@10 137 }
Chris@10 138 T5 = VSUB(T2, T4);
Chris@10 139 Ta = VSUB(T7, T9);
Chris@10 140 Tc = VADD(T2, T4);
Chris@10 141 Td = VADD(T7, T9);
Chris@10 142 Tg = VADD(Tc, Td);
Chris@10 143 }
Chris@10 144 ST(&(x[0]), VADD(Tf, Tg), ms, &(x[0]));
Chris@10 145 {
Chris@10 146 V Tb, Tj, Ti, Tk, Te, Th;
Chris@10 147 Tb = VBYI(VFMA(LDK(KP951056516), T5, VMUL(LDK(KP587785252), Ta)));
Chris@10 148 Tj = VBYI(VFNMS(LDK(KP951056516), Ta, VMUL(LDK(KP587785252), T5)));
Chris@10 149 Te = VMUL(LDK(KP559016994), VSUB(Tc, Td));
Chris@10 150 Th = VFNMS(LDK(KP250000000), Tg, Tf);
Chris@10 151 Ti = VADD(Te, Th);
Chris@10 152 Tk = VSUB(Th, Te);
Chris@10 153 ST(&(x[WS(rs, 1)]), VADD(Tb, Ti), ms, &(x[WS(rs, 1)]));
Chris@10 154 ST(&(x[WS(rs, 3)]), VSUB(Tk, Tj), ms, &(x[WS(rs, 1)]));
Chris@10 155 ST(&(x[WS(rs, 4)]), VSUB(Ti, Tb), ms, &(x[0]));
Chris@10 156 ST(&(x[WS(rs, 2)]), VADD(Tj, Tk), ms, &(x[0]));
Chris@10 157 }
Chris@10 158 }
Chris@10 159 }
Chris@10 160 VLEAVE();
Chris@10 161 }
Chris@10 162
Chris@10 163 static const tw_instr twinstr[] = {
Chris@10 164 VTW(0, 1),
Chris@10 165 VTW(0, 2),
Chris@10 166 VTW(0, 3),
Chris@10 167 VTW(0, 4),
Chris@10 168 {TW_NEXT, VL, 0}
Chris@10 169 };
Chris@10 170
Chris@10 171 static const ct_desc desc = { 5, XSIMD_STRING("t2bv_5"), twinstr, &GENUS, {17, 11, 3, 0}, 0, 0, 0 };
Chris@10 172
Chris@10 173 void XSIMD(codelet_t2bv_5) (planner *p) {
Chris@10 174 X(kdft_dit_register) (p, t2bv_5, &desc);
Chris@10 175 }
Chris@10 176 #endif /* HAVE_FMA */