annotate src/fftw-3.3.3/dft/simd/common/t1sv_8.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:39:24 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include ts.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 66 FP additions, 36 FP multiplications,
Chris@10 32 * (or, 44 additions, 14 multiplications, 22 fused multiply/add),
Chris@10 33 * 59 stack variables, 1 constants, and 32 memory accesses
Chris@10 34 */
Chris@10 35 #include "ts.h"
Chris@10 36
Chris@10 37 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 40 {
Chris@10 41 INT m;
Chris@10 42 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 43 V T1, T1m, T1l, T7, TS, Tk, TQ, Te, To, Tr, Tu, T14, TF, Tx, T16;
Chris@10 44 V TL, Tt, TW, Tp, Tq, Tw;
Chris@10 45 {
Chris@10 46 V T3, T6, T2, T5;
Chris@10 47 T1 = LD(&(ri[0]), ms, &(ri[0]));
Chris@10 48 T1m = LD(&(ii[0]), ms, &(ii[0]));
Chris@10 49 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
Chris@10 50 T6 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
Chris@10 51 T2 = LDW(&(W[TWVL * 6]));
Chris@10 52 T5 = LDW(&(W[TWVL * 7]));
Chris@10 53 {
Chris@10 54 V Tg, Tj, Ti, Ta, Td, T1k, T4, T9, Tc, TR, Th, Tf;
Chris@10 55 Tg = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
Chris@10 56 Tj = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
Chris@10 57 Tf = LDW(&(W[TWVL * 10]));
Chris@10 58 Ti = LDW(&(W[TWVL * 11]));
Chris@10 59 Ta = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
Chris@10 60 Td = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
Chris@10 61 T1k = VMUL(T2, T6);
Chris@10 62 T4 = VMUL(T2, T3);
Chris@10 63 T9 = LDW(&(W[TWVL * 2]));
Chris@10 64 Tc = LDW(&(W[TWVL * 3]));
Chris@10 65 TR = VMUL(Tf, Tj);
Chris@10 66 Th = VMUL(Tf, Tg);
Chris@10 67 {
Chris@10 68 V TB, TE, TH, TK, TG, TD, TJ, T13, TC, TA, TP, Tb, T15, TI, Tn;
Chris@10 69 TB = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
Chris@10 70 TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
Chris@10 71 T1l = VFNMS(T5, T3, T1k);
Chris@10 72 T7 = VFMA(T5, T6, T4);
Chris@10 73 TP = VMUL(T9, Td);
Chris@10 74 Tb = VMUL(T9, Ta);
Chris@10 75 TS = VFNMS(Ti, Tg, TR);
Chris@10 76 Tk = VFMA(Ti, Tj, Th);
Chris@10 77 TA = LDW(&(W[TWVL * 12]));
Chris@10 78 TH = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
Chris@10 79 TK = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
Chris@10 80 TG = LDW(&(W[TWVL * 4]));
Chris@10 81 TQ = VFNMS(Tc, Ta, TP);
Chris@10 82 Te = VFMA(Tc, Td, Tb);
Chris@10 83 TD = LDW(&(W[TWVL * 13]));
Chris@10 84 TJ = LDW(&(W[TWVL * 5]));
Chris@10 85 T13 = VMUL(TA, TE);
Chris@10 86 TC = VMUL(TA, TB);
Chris@10 87 To = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
Chris@10 88 T15 = VMUL(TG, TK);
Chris@10 89 TI = VMUL(TG, TH);
Chris@10 90 Tr = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
Chris@10 91 Tn = LDW(&(W[0]));
Chris@10 92 Tu = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
Chris@10 93 T14 = VFNMS(TD, TB, T13);
Chris@10 94 TF = VFMA(TD, TE, TC);
Chris@10 95 Tx = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
Chris@10 96 T16 = VFNMS(TJ, TH, T15);
Chris@10 97 TL = VFMA(TJ, TK, TI);
Chris@10 98 Tt = LDW(&(W[TWVL * 8]));
Chris@10 99 TW = VMUL(Tn, Tr);
Chris@10 100 Tp = VMUL(Tn, To);
Chris@10 101 Tq = LDW(&(W[TWVL * 1]));
Chris@10 102 Tw = LDW(&(W[TWVL * 9]));
Chris@10 103 }
Chris@10 104 }
Chris@10 105 }
Chris@10 106 {
Chris@10 107 V T8, T1g, TM, T1j, TX, Ts, T1n, T1r, T1s, Tl, T1c, T18, TZ, Ty, T1a;
Chris@10 108 V TU;
Chris@10 109 {
Chris@10 110 V TO, T17, T12, TY, Tv, TT;
Chris@10 111 T8 = VADD(T1, T7);
Chris@10 112 TO = VSUB(T1, T7);
Chris@10 113 T17 = VSUB(T14, T16);
Chris@10 114 T1g = VADD(T14, T16);
Chris@10 115 TM = VADD(TF, TL);
Chris@10 116 T12 = VSUB(TF, TL);
Chris@10 117 TY = VMUL(Tt, Tx);
Chris@10 118 Tv = VMUL(Tt, Tu);
Chris@10 119 TT = VSUB(TQ, TS);
Chris@10 120 T1j = VADD(TQ, TS);
Chris@10 121 TX = VFNMS(Tq, To, TW);
Chris@10 122 Ts = VFMA(Tq, Tr, Tp);
Chris@10 123 T1n = VADD(T1l, T1m);
Chris@10 124 T1r = VSUB(T1m, T1l);
Chris@10 125 T1s = VSUB(Te, Tk);
Chris@10 126 Tl = VADD(Te, Tk);
Chris@10 127 T1c = VADD(T12, T17);
Chris@10 128 T18 = VSUB(T12, T17);
Chris@10 129 TZ = VFNMS(Tw, Tu, TY);
Chris@10 130 Ty = VFMA(Tw, Tx, Tv);
Chris@10 131 T1a = VSUB(TO, TT);
Chris@10 132 TU = VADD(TO, TT);
Chris@10 133 }
Chris@10 134 {
Chris@10 135 V T1v, T1t, Tm, T1e, T1o, T1q, TN, T1p, T1d, T1u, T19, T1w, T1i, T1h;
Chris@10 136 {
Chris@10 137 V T10, T1f, Tz, TV, T11, T1b;
Chris@10 138 T1v = VADD(T1s, T1r);
Chris@10 139 T1t = VSUB(T1r, T1s);
Chris@10 140 T10 = VSUB(TX, TZ);
Chris@10 141 T1f = VADD(TX, TZ);
Chris@10 142 Tz = VADD(Ts, Ty);
Chris@10 143 TV = VSUB(Ts, Ty);
Chris@10 144 T11 = VADD(TV, T10);
Chris@10 145 T1b = VSUB(T10, TV);
Chris@10 146 Tm = VADD(T8, Tl);
Chris@10 147 T1e = VSUB(T8, Tl);
Chris@10 148 T1o = VADD(T1j, T1n);
Chris@10 149 T1q = VSUB(T1n, T1j);
Chris@10 150 TN = VADD(Tz, TM);
Chris@10 151 T1p = VSUB(TM, Tz);
Chris@10 152 T1d = VSUB(T1b, T1c);
Chris@10 153 T1u = VADD(T1b, T1c);
Chris@10 154 T19 = VADD(T11, T18);
Chris@10 155 T1w = VSUB(T18, T11);
Chris@10 156 T1i = VADD(T1f, T1g);
Chris@10 157 T1h = VSUB(T1f, T1g);
Chris@10 158 }
Chris@10 159 ST(&(ii[WS(rs, 6)]), VSUB(T1q, T1p), ms, &(ii[0]));
Chris@10 160 ST(&(ri[0]), VADD(Tm, TN), ms, &(ri[0]));
Chris@10 161 ST(&(ri[WS(rs, 4)]), VSUB(Tm, TN), ms, &(ri[0]));
Chris@10 162 ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
Chris@10 163 ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
Chris@10 164 ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
Chris@10 165 ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
Chris@10 166 ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
Chris@10 167 ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
Chris@10 168 ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
Chris@10 169 ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
Chris@10 170 ST(&(ri[WS(rs, 6)]), VSUB(T1e, T1h), ms, &(ri[0]));
Chris@10 171 ST(&(ii[0]), VADD(T1i, T1o), ms, &(ii[0]));
Chris@10 172 ST(&(ii[WS(rs, 4)]), VSUB(T1o, T1i), ms, &(ii[0]));
Chris@10 173 ST(&(ri[WS(rs, 2)]), VADD(T1e, T1h), ms, &(ri[0]));
Chris@10 174 ST(&(ii[WS(rs, 2)]), VADD(T1p, T1q), ms, &(ii[0]));
Chris@10 175 }
Chris@10 176 }
Chris@10 177 }
Chris@10 178 }
Chris@10 179 VLEAVE();
Chris@10 180 }
Chris@10 181
Chris@10 182 static const tw_instr twinstr[] = {
Chris@10 183 VTW(0, 1),
Chris@10 184 VTW(0, 2),
Chris@10 185 VTW(0, 3),
Chris@10 186 VTW(0, 4),
Chris@10 187 VTW(0, 5),
Chris@10 188 VTW(0, 6),
Chris@10 189 VTW(0, 7),
Chris@10 190 {TW_NEXT, (2 * VL), 0}
Chris@10 191 };
Chris@10 192
Chris@10 193 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {44, 14, 22, 0}, 0, 0, 0 };
Chris@10 194
Chris@10 195 void XSIMD(codelet_t1sv_8) (planner *p) {
Chris@10 196 X(kdft_dit_register) (p, t1sv_8, &desc);
Chris@10 197 }
Chris@10 198 #else /* HAVE_FMA */
Chris@10 199
Chris@10 200 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include ts.h */
Chris@10 201
Chris@10 202 /*
Chris@10 203 * This function contains 66 FP additions, 32 FP multiplications,
Chris@10 204 * (or, 52 additions, 18 multiplications, 14 fused multiply/add),
Chris@10 205 * 28 stack variables, 1 constants, and 32 memory accesses
Chris@10 206 */
Chris@10 207 #include "ts.h"
Chris@10 208
Chris@10 209 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 210 {
Chris@10 211 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 212 {
Chris@10 213 INT m;
Chris@10 214 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@10 215 V T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM;
Chris@10 216 V TP;
Chris@10 217 {
Chris@10 218 V T1, T18, T6, T17;
Chris@10 219 T1 = LD(&(ri[0]), ms, &(ri[0]));
Chris@10 220 T18 = LD(&(ii[0]), ms, &(ii[0]));
Chris@10 221 {
Chris@10 222 V T3, T5, T2, T4;
Chris@10 223 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
Chris@10 224 T5 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
Chris@10 225 T2 = LDW(&(W[TWVL * 6]));
Chris@10 226 T4 = LDW(&(W[TWVL * 7]));
Chris@10 227 T6 = VFMA(T2, T3, VMUL(T4, T5));
Chris@10 228 T17 = VFNMS(T4, T3, VMUL(T2, T5));
Chris@10 229 }
Chris@10 230 T7 = VADD(T1, T6);
Chris@10 231 T1e = VSUB(T18, T17);
Chris@10 232 TH = VSUB(T1, T6);
Chris@10 233 T19 = VADD(T17, T18);
Chris@10 234 }
Chris@10 235 {
Chris@10 236 V Tz, TS, TE, TT;
Chris@10 237 {
Chris@10 238 V Tw, Ty, Tv, Tx;
Chris@10 239 Tw = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
Chris@10 240 Ty = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
Chris@10 241 Tv = LDW(&(W[TWVL * 12]));
Chris@10 242 Tx = LDW(&(W[TWVL * 13]));
Chris@10 243 Tz = VFMA(Tv, Tw, VMUL(Tx, Ty));
Chris@10 244 TS = VFNMS(Tx, Tw, VMUL(Tv, Ty));
Chris@10 245 }
Chris@10 246 {
Chris@10 247 V TB, TD, TA, TC;
Chris@10 248 TB = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
Chris@10 249 TD = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
Chris@10 250 TA = LDW(&(W[TWVL * 4]));
Chris@10 251 TC = LDW(&(W[TWVL * 5]));
Chris@10 252 TE = VFMA(TA, TB, VMUL(TC, TD));
Chris@10 253 TT = VFNMS(TC, TB, VMUL(TA, TD));
Chris@10 254 }
Chris@10 255 TF = VADD(Tz, TE);
Chris@10 256 T13 = VADD(TS, TT);
Chris@10 257 TR = VSUB(Tz, TE);
Chris@10 258 TU = VSUB(TS, TT);
Chris@10 259 }
Chris@10 260 {
Chris@10 261 V Tc, TI, Th, TJ;
Chris@10 262 {
Chris@10 263 V T9, Tb, T8, Ta;
Chris@10 264 T9 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
Chris@10 265 Tb = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
Chris@10 266 T8 = LDW(&(W[TWVL * 2]));
Chris@10 267 Ta = LDW(&(W[TWVL * 3]));
Chris@10 268 Tc = VFMA(T8, T9, VMUL(Ta, Tb));
Chris@10 269 TI = VFNMS(Ta, T9, VMUL(T8, Tb));
Chris@10 270 }
Chris@10 271 {
Chris@10 272 V Te, Tg, Td, Tf;
Chris@10 273 Te = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
Chris@10 274 Tg = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
Chris@10 275 Td = LDW(&(W[TWVL * 10]));
Chris@10 276 Tf = LDW(&(W[TWVL * 11]));
Chris@10 277 Th = VFMA(Td, Te, VMUL(Tf, Tg));
Chris@10 278 TJ = VFNMS(Tf, Te, VMUL(Td, Tg));
Chris@10 279 }
Chris@10 280 Ti = VADD(Tc, Th);
Chris@10 281 T1f = VSUB(Tc, Th);
Chris@10 282 TK = VSUB(TI, TJ);
Chris@10 283 T16 = VADD(TI, TJ);
Chris@10 284 }
Chris@10 285 {
Chris@10 286 V To, TN, Tt, TO;
Chris@10 287 {
Chris@10 288 V Tl, Tn, Tk, Tm;
Chris@10 289 Tl = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
Chris@10 290 Tn = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
Chris@10 291 Tk = LDW(&(W[0]));
Chris@10 292 Tm = LDW(&(W[TWVL * 1]));
Chris@10 293 To = VFMA(Tk, Tl, VMUL(Tm, Tn));
Chris@10 294 TN = VFNMS(Tm, Tl, VMUL(Tk, Tn));
Chris@10 295 }
Chris@10 296 {
Chris@10 297 V Tq, Ts, Tp, Tr;
Chris@10 298 Tq = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
Chris@10 299 Ts = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
Chris@10 300 Tp = LDW(&(W[TWVL * 8]));
Chris@10 301 Tr = LDW(&(W[TWVL * 9]));
Chris@10 302 Tt = VFMA(Tp, Tq, VMUL(Tr, Ts));
Chris@10 303 TO = VFNMS(Tr, Tq, VMUL(Tp, Ts));
Chris@10 304 }
Chris@10 305 Tu = VADD(To, Tt);
Chris@10 306 T12 = VADD(TN, TO);
Chris@10 307 TM = VSUB(To, Tt);
Chris@10 308 TP = VSUB(TN, TO);
Chris@10 309 }
Chris@10 310 {
Chris@10 311 V Tj, TG, T1b, T1c;
Chris@10 312 Tj = VADD(T7, Ti);
Chris@10 313 TG = VADD(Tu, TF);
Chris@10 314 ST(&(ri[WS(rs, 4)]), VSUB(Tj, TG), ms, &(ri[0]));
Chris@10 315 ST(&(ri[0]), VADD(Tj, TG), ms, &(ri[0]));
Chris@10 316 {
Chris@10 317 V T15, T1a, T11, T14;
Chris@10 318 T15 = VADD(T12, T13);
Chris@10 319 T1a = VADD(T16, T19);
Chris@10 320 ST(&(ii[0]), VADD(T15, T1a), ms, &(ii[0]));
Chris@10 321 ST(&(ii[WS(rs, 4)]), VSUB(T1a, T15), ms, &(ii[0]));
Chris@10 322 T11 = VSUB(T7, Ti);
Chris@10 323 T14 = VSUB(T12, T13);
Chris@10 324 ST(&(ri[WS(rs, 6)]), VSUB(T11, T14), ms, &(ri[0]));
Chris@10 325 ST(&(ri[WS(rs, 2)]), VADD(T11, T14), ms, &(ri[0]));
Chris@10 326 }
Chris@10 327 T1b = VSUB(TF, Tu);
Chris@10 328 T1c = VSUB(T19, T16);
Chris@10 329 ST(&(ii[WS(rs, 2)]), VADD(T1b, T1c), ms, &(ii[0]));
Chris@10 330 ST(&(ii[WS(rs, 6)]), VSUB(T1c, T1b), ms, &(ii[0]));
Chris@10 331 {
Chris@10 332 V TX, T1g, T10, T1d, TY, TZ;
Chris@10 333 TX = VSUB(TH, TK);
Chris@10 334 T1g = VSUB(T1e, T1f);
Chris@10 335 TY = VSUB(TP, TM);
Chris@10 336 TZ = VADD(TR, TU);
Chris@10 337 T10 = VMUL(LDK(KP707106781), VSUB(TY, TZ));
Chris@10 338 T1d = VMUL(LDK(KP707106781), VADD(TY, TZ));
Chris@10 339 ST(&(ri[WS(rs, 7)]), VSUB(TX, T10), ms, &(ri[WS(rs, 1)]));
Chris@10 340 ST(&(ii[WS(rs, 5)]), VSUB(T1g, T1d), ms, &(ii[WS(rs, 1)]));
Chris@10 341 ST(&(ri[WS(rs, 3)]), VADD(TX, T10), ms, &(ri[WS(rs, 1)]));
Chris@10 342 ST(&(ii[WS(rs, 1)]), VADD(T1d, T1g), ms, &(ii[WS(rs, 1)]));
Chris@10 343 }
Chris@10 344 {
Chris@10 345 V TL, T1i, TW, T1h, TQ, TV;
Chris@10 346 TL = VADD(TH, TK);
Chris@10 347 T1i = VADD(T1f, T1e);
Chris@10 348 TQ = VADD(TM, TP);
Chris@10 349 TV = VSUB(TR, TU);
Chris@10 350 TW = VMUL(LDK(KP707106781), VADD(TQ, TV));
Chris@10 351 T1h = VMUL(LDK(KP707106781), VSUB(TV, TQ));
Chris@10 352 ST(&(ri[WS(rs, 5)]), VSUB(TL, TW), ms, &(ri[WS(rs, 1)]));
Chris@10 353 ST(&(ii[WS(rs, 7)]), VSUB(T1i, T1h), ms, &(ii[WS(rs, 1)]));
Chris@10 354 ST(&(ri[WS(rs, 1)]), VADD(TL, TW), ms, &(ri[WS(rs, 1)]));
Chris@10 355 ST(&(ii[WS(rs, 3)]), VADD(T1h, T1i), ms, &(ii[WS(rs, 1)]));
Chris@10 356 }
Chris@10 357 }
Chris@10 358 }
Chris@10 359 }
Chris@10 360 VLEAVE();
Chris@10 361 }
Chris@10 362
Chris@10 363 static const tw_instr twinstr[] = {
Chris@10 364 VTW(0, 1),
Chris@10 365 VTW(0, 2),
Chris@10 366 VTW(0, 3),
Chris@10 367 VTW(0, 4),
Chris@10 368 VTW(0, 5),
Chris@10 369 VTW(0, 6),
Chris@10 370 VTW(0, 7),
Chris@10 371 {TW_NEXT, (2 * VL), 0}
Chris@10 372 };
Chris@10 373
Chris@10 374 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {52, 18, 14, 0}, 0, 0, 0 };
Chris@10 375
Chris@10 376 void XSIMD(codelet_t1sv_8) (planner *p) {
Chris@10 377 X(kdft_dit_register) (p, t1sv_8, &desc);
Chris@10 378 }
Chris@10 379 #endif /* HAVE_FMA */