Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:39:24 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include ts.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 66 FP additions, 36 FP multiplications,
|
Chris@10
|
32 * (or, 44 additions, 14 multiplications, 22 fused multiply/add),
|
Chris@10
|
33 * 59 stack variables, 1 constants, and 32 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "ts.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
40 {
|
Chris@10
|
41 INT m;
|
Chris@10
|
42 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
|
Chris@10
|
43 V T1, T1m, T1l, T7, TS, Tk, TQ, Te, To, Tr, Tu, T14, TF, Tx, T16;
|
Chris@10
|
44 V TL, Tt, TW, Tp, Tq, Tw;
|
Chris@10
|
45 {
|
Chris@10
|
46 V T3, T6, T2, T5;
|
Chris@10
|
47 T1 = LD(&(ri[0]), ms, &(ri[0]));
|
Chris@10
|
48 T1m = LD(&(ii[0]), ms, &(ii[0]));
|
Chris@10
|
49 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
|
Chris@10
|
50 T6 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
|
Chris@10
|
51 T2 = LDW(&(W[TWVL * 6]));
|
Chris@10
|
52 T5 = LDW(&(W[TWVL * 7]));
|
Chris@10
|
53 {
|
Chris@10
|
54 V Tg, Tj, Ti, Ta, Td, T1k, T4, T9, Tc, TR, Th, Tf;
|
Chris@10
|
55 Tg = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
|
Chris@10
|
56 Tj = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
|
Chris@10
|
57 Tf = LDW(&(W[TWVL * 10]));
|
Chris@10
|
58 Ti = LDW(&(W[TWVL * 11]));
|
Chris@10
|
59 Ta = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
|
Chris@10
|
60 Td = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
|
Chris@10
|
61 T1k = VMUL(T2, T6);
|
Chris@10
|
62 T4 = VMUL(T2, T3);
|
Chris@10
|
63 T9 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
64 Tc = LDW(&(W[TWVL * 3]));
|
Chris@10
|
65 TR = VMUL(Tf, Tj);
|
Chris@10
|
66 Th = VMUL(Tf, Tg);
|
Chris@10
|
67 {
|
Chris@10
|
68 V TB, TE, TH, TK, TG, TD, TJ, T13, TC, TA, TP, Tb, T15, TI, Tn;
|
Chris@10
|
69 TB = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
70 TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
71 T1l = VFNMS(T5, T3, T1k);
|
Chris@10
|
72 T7 = VFMA(T5, T6, T4);
|
Chris@10
|
73 TP = VMUL(T9, Td);
|
Chris@10
|
74 Tb = VMUL(T9, Ta);
|
Chris@10
|
75 TS = VFNMS(Ti, Tg, TR);
|
Chris@10
|
76 Tk = VFMA(Ti, Tj, Th);
|
Chris@10
|
77 TA = LDW(&(W[TWVL * 12]));
|
Chris@10
|
78 TH = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
79 TK = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
80 TG = LDW(&(W[TWVL * 4]));
|
Chris@10
|
81 TQ = VFNMS(Tc, Ta, TP);
|
Chris@10
|
82 Te = VFMA(Tc, Td, Tb);
|
Chris@10
|
83 TD = LDW(&(W[TWVL * 13]));
|
Chris@10
|
84 TJ = LDW(&(W[TWVL * 5]));
|
Chris@10
|
85 T13 = VMUL(TA, TE);
|
Chris@10
|
86 TC = VMUL(TA, TB);
|
Chris@10
|
87 To = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
88 T15 = VMUL(TG, TK);
|
Chris@10
|
89 TI = VMUL(TG, TH);
|
Chris@10
|
90 Tr = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
91 Tn = LDW(&(W[0]));
|
Chris@10
|
92 Tu = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
93 T14 = VFNMS(TD, TB, T13);
|
Chris@10
|
94 TF = VFMA(TD, TE, TC);
|
Chris@10
|
95 Tx = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
96 T16 = VFNMS(TJ, TH, T15);
|
Chris@10
|
97 TL = VFMA(TJ, TK, TI);
|
Chris@10
|
98 Tt = LDW(&(W[TWVL * 8]));
|
Chris@10
|
99 TW = VMUL(Tn, Tr);
|
Chris@10
|
100 Tp = VMUL(Tn, To);
|
Chris@10
|
101 Tq = LDW(&(W[TWVL * 1]));
|
Chris@10
|
102 Tw = LDW(&(W[TWVL * 9]));
|
Chris@10
|
103 }
|
Chris@10
|
104 }
|
Chris@10
|
105 }
|
Chris@10
|
106 {
|
Chris@10
|
107 V T8, T1g, TM, T1j, TX, Ts, T1n, T1r, T1s, Tl, T1c, T18, TZ, Ty, T1a;
|
Chris@10
|
108 V TU;
|
Chris@10
|
109 {
|
Chris@10
|
110 V TO, T17, T12, TY, Tv, TT;
|
Chris@10
|
111 T8 = VADD(T1, T7);
|
Chris@10
|
112 TO = VSUB(T1, T7);
|
Chris@10
|
113 T17 = VSUB(T14, T16);
|
Chris@10
|
114 T1g = VADD(T14, T16);
|
Chris@10
|
115 TM = VADD(TF, TL);
|
Chris@10
|
116 T12 = VSUB(TF, TL);
|
Chris@10
|
117 TY = VMUL(Tt, Tx);
|
Chris@10
|
118 Tv = VMUL(Tt, Tu);
|
Chris@10
|
119 TT = VSUB(TQ, TS);
|
Chris@10
|
120 T1j = VADD(TQ, TS);
|
Chris@10
|
121 TX = VFNMS(Tq, To, TW);
|
Chris@10
|
122 Ts = VFMA(Tq, Tr, Tp);
|
Chris@10
|
123 T1n = VADD(T1l, T1m);
|
Chris@10
|
124 T1r = VSUB(T1m, T1l);
|
Chris@10
|
125 T1s = VSUB(Te, Tk);
|
Chris@10
|
126 Tl = VADD(Te, Tk);
|
Chris@10
|
127 T1c = VADD(T12, T17);
|
Chris@10
|
128 T18 = VSUB(T12, T17);
|
Chris@10
|
129 TZ = VFNMS(Tw, Tu, TY);
|
Chris@10
|
130 Ty = VFMA(Tw, Tx, Tv);
|
Chris@10
|
131 T1a = VSUB(TO, TT);
|
Chris@10
|
132 TU = VADD(TO, TT);
|
Chris@10
|
133 }
|
Chris@10
|
134 {
|
Chris@10
|
135 V T1v, T1t, Tm, T1e, T1o, T1q, TN, T1p, T1d, T1u, T19, T1w, T1i, T1h;
|
Chris@10
|
136 {
|
Chris@10
|
137 V T10, T1f, Tz, TV, T11, T1b;
|
Chris@10
|
138 T1v = VADD(T1s, T1r);
|
Chris@10
|
139 T1t = VSUB(T1r, T1s);
|
Chris@10
|
140 T10 = VSUB(TX, TZ);
|
Chris@10
|
141 T1f = VADD(TX, TZ);
|
Chris@10
|
142 Tz = VADD(Ts, Ty);
|
Chris@10
|
143 TV = VSUB(Ts, Ty);
|
Chris@10
|
144 T11 = VADD(TV, T10);
|
Chris@10
|
145 T1b = VSUB(T10, TV);
|
Chris@10
|
146 Tm = VADD(T8, Tl);
|
Chris@10
|
147 T1e = VSUB(T8, Tl);
|
Chris@10
|
148 T1o = VADD(T1j, T1n);
|
Chris@10
|
149 T1q = VSUB(T1n, T1j);
|
Chris@10
|
150 TN = VADD(Tz, TM);
|
Chris@10
|
151 T1p = VSUB(TM, Tz);
|
Chris@10
|
152 T1d = VSUB(T1b, T1c);
|
Chris@10
|
153 T1u = VADD(T1b, T1c);
|
Chris@10
|
154 T19 = VADD(T11, T18);
|
Chris@10
|
155 T1w = VSUB(T18, T11);
|
Chris@10
|
156 T1i = VADD(T1f, T1g);
|
Chris@10
|
157 T1h = VSUB(T1f, T1g);
|
Chris@10
|
158 }
|
Chris@10
|
159 ST(&(ii[WS(rs, 6)]), VSUB(T1q, T1p), ms, &(ii[0]));
|
Chris@10
|
160 ST(&(ri[0]), VADD(Tm, TN), ms, &(ri[0]));
|
Chris@10
|
161 ST(&(ri[WS(rs, 4)]), VSUB(Tm, TN), ms, &(ri[0]));
|
Chris@10
|
162 ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
163 ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
164 ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
165 ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
166 ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
167 ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
168 ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
169 ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
170 ST(&(ri[WS(rs, 6)]), VSUB(T1e, T1h), ms, &(ri[0]));
|
Chris@10
|
171 ST(&(ii[0]), VADD(T1i, T1o), ms, &(ii[0]));
|
Chris@10
|
172 ST(&(ii[WS(rs, 4)]), VSUB(T1o, T1i), ms, &(ii[0]));
|
Chris@10
|
173 ST(&(ri[WS(rs, 2)]), VADD(T1e, T1h), ms, &(ri[0]));
|
Chris@10
|
174 ST(&(ii[WS(rs, 2)]), VADD(T1p, T1q), ms, &(ii[0]));
|
Chris@10
|
175 }
|
Chris@10
|
176 }
|
Chris@10
|
177 }
|
Chris@10
|
178 }
|
Chris@10
|
179 VLEAVE();
|
Chris@10
|
180 }
|
Chris@10
|
181
|
Chris@10
|
182 static const tw_instr twinstr[] = {
|
Chris@10
|
183 VTW(0, 1),
|
Chris@10
|
184 VTW(0, 2),
|
Chris@10
|
185 VTW(0, 3),
|
Chris@10
|
186 VTW(0, 4),
|
Chris@10
|
187 VTW(0, 5),
|
Chris@10
|
188 VTW(0, 6),
|
Chris@10
|
189 VTW(0, 7),
|
Chris@10
|
190 {TW_NEXT, (2 * VL), 0}
|
Chris@10
|
191 };
|
Chris@10
|
192
|
Chris@10
|
193 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {44, 14, 22, 0}, 0, 0, 0 };
|
Chris@10
|
194
|
Chris@10
|
195 void XSIMD(codelet_t1sv_8) (planner *p) {
|
Chris@10
|
196 X(kdft_dit_register) (p, t1sv_8, &desc);
|
Chris@10
|
197 }
|
Chris@10
|
198 #else /* HAVE_FMA */
|
Chris@10
|
199
|
Chris@10
|
200 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include ts.h */
|
Chris@10
|
201
|
Chris@10
|
202 /*
|
Chris@10
|
203 * This function contains 66 FP additions, 32 FP multiplications,
|
Chris@10
|
204 * (or, 52 additions, 18 multiplications, 14 fused multiply/add),
|
Chris@10
|
205 * 28 stack variables, 1 constants, and 32 memory accesses
|
Chris@10
|
206 */
|
Chris@10
|
207 #include "ts.h"
|
Chris@10
|
208
|
Chris@10
|
209 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
210 {
|
Chris@10
|
211 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
212 {
|
Chris@10
|
213 INT m;
|
Chris@10
|
214 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
|
Chris@10
|
215 V T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM;
|
Chris@10
|
216 V TP;
|
Chris@10
|
217 {
|
Chris@10
|
218 V T1, T18, T6, T17;
|
Chris@10
|
219 T1 = LD(&(ri[0]), ms, &(ri[0]));
|
Chris@10
|
220 T18 = LD(&(ii[0]), ms, &(ii[0]));
|
Chris@10
|
221 {
|
Chris@10
|
222 V T3, T5, T2, T4;
|
Chris@10
|
223 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
|
Chris@10
|
224 T5 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
|
Chris@10
|
225 T2 = LDW(&(W[TWVL * 6]));
|
Chris@10
|
226 T4 = LDW(&(W[TWVL * 7]));
|
Chris@10
|
227 T6 = VFMA(T2, T3, VMUL(T4, T5));
|
Chris@10
|
228 T17 = VFNMS(T4, T3, VMUL(T2, T5));
|
Chris@10
|
229 }
|
Chris@10
|
230 T7 = VADD(T1, T6);
|
Chris@10
|
231 T1e = VSUB(T18, T17);
|
Chris@10
|
232 TH = VSUB(T1, T6);
|
Chris@10
|
233 T19 = VADD(T17, T18);
|
Chris@10
|
234 }
|
Chris@10
|
235 {
|
Chris@10
|
236 V Tz, TS, TE, TT;
|
Chris@10
|
237 {
|
Chris@10
|
238 V Tw, Ty, Tv, Tx;
|
Chris@10
|
239 Tw = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
240 Ty = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
241 Tv = LDW(&(W[TWVL * 12]));
|
Chris@10
|
242 Tx = LDW(&(W[TWVL * 13]));
|
Chris@10
|
243 Tz = VFMA(Tv, Tw, VMUL(Tx, Ty));
|
Chris@10
|
244 TS = VFNMS(Tx, Tw, VMUL(Tv, Ty));
|
Chris@10
|
245 }
|
Chris@10
|
246 {
|
Chris@10
|
247 V TB, TD, TA, TC;
|
Chris@10
|
248 TB = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
249 TD = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
250 TA = LDW(&(W[TWVL * 4]));
|
Chris@10
|
251 TC = LDW(&(W[TWVL * 5]));
|
Chris@10
|
252 TE = VFMA(TA, TB, VMUL(TC, TD));
|
Chris@10
|
253 TT = VFNMS(TC, TB, VMUL(TA, TD));
|
Chris@10
|
254 }
|
Chris@10
|
255 TF = VADD(Tz, TE);
|
Chris@10
|
256 T13 = VADD(TS, TT);
|
Chris@10
|
257 TR = VSUB(Tz, TE);
|
Chris@10
|
258 TU = VSUB(TS, TT);
|
Chris@10
|
259 }
|
Chris@10
|
260 {
|
Chris@10
|
261 V Tc, TI, Th, TJ;
|
Chris@10
|
262 {
|
Chris@10
|
263 V T9, Tb, T8, Ta;
|
Chris@10
|
264 T9 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
|
Chris@10
|
265 Tb = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
|
Chris@10
|
266 T8 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
267 Ta = LDW(&(W[TWVL * 3]));
|
Chris@10
|
268 Tc = VFMA(T8, T9, VMUL(Ta, Tb));
|
Chris@10
|
269 TI = VFNMS(Ta, T9, VMUL(T8, Tb));
|
Chris@10
|
270 }
|
Chris@10
|
271 {
|
Chris@10
|
272 V Te, Tg, Td, Tf;
|
Chris@10
|
273 Te = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
|
Chris@10
|
274 Tg = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
|
Chris@10
|
275 Td = LDW(&(W[TWVL * 10]));
|
Chris@10
|
276 Tf = LDW(&(W[TWVL * 11]));
|
Chris@10
|
277 Th = VFMA(Td, Te, VMUL(Tf, Tg));
|
Chris@10
|
278 TJ = VFNMS(Tf, Te, VMUL(Td, Tg));
|
Chris@10
|
279 }
|
Chris@10
|
280 Ti = VADD(Tc, Th);
|
Chris@10
|
281 T1f = VSUB(Tc, Th);
|
Chris@10
|
282 TK = VSUB(TI, TJ);
|
Chris@10
|
283 T16 = VADD(TI, TJ);
|
Chris@10
|
284 }
|
Chris@10
|
285 {
|
Chris@10
|
286 V To, TN, Tt, TO;
|
Chris@10
|
287 {
|
Chris@10
|
288 V Tl, Tn, Tk, Tm;
|
Chris@10
|
289 Tl = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
290 Tn = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
291 Tk = LDW(&(W[0]));
|
Chris@10
|
292 Tm = LDW(&(W[TWVL * 1]));
|
Chris@10
|
293 To = VFMA(Tk, Tl, VMUL(Tm, Tn));
|
Chris@10
|
294 TN = VFNMS(Tm, Tl, VMUL(Tk, Tn));
|
Chris@10
|
295 }
|
Chris@10
|
296 {
|
Chris@10
|
297 V Tq, Ts, Tp, Tr;
|
Chris@10
|
298 Tq = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
299 Ts = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
300 Tp = LDW(&(W[TWVL * 8]));
|
Chris@10
|
301 Tr = LDW(&(W[TWVL * 9]));
|
Chris@10
|
302 Tt = VFMA(Tp, Tq, VMUL(Tr, Ts));
|
Chris@10
|
303 TO = VFNMS(Tr, Tq, VMUL(Tp, Ts));
|
Chris@10
|
304 }
|
Chris@10
|
305 Tu = VADD(To, Tt);
|
Chris@10
|
306 T12 = VADD(TN, TO);
|
Chris@10
|
307 TM = VSUB(To, Tt);
|
Chris@10
|
308 TP = VSUB(TN, TO);
|
Chris@10
|
309 }
|
Chris@10
|
310 {
|
Chris@10
|
311 V Tj, TG, T1b, T1c;
|
Chris@10
|
312 Tj = VADD(T7, Ti);
|
Chris@10
|
313 TG = VADD(Tu, TF);
|
Chris@10
|
314 ST(&(ri[WS(rs, 4)]), VSUB(Tj, TG), ms, &(ri[0]));
|
Chris@10
|
315 ST(&(ri[0]), VADD(Tj, TG), ms, &(ri[0]));
|
Chris@10
|
316 {
|
Chris@10
|
317 V T15, T1a, T11, T14;
|
Chris@10
|
318 T15 = VADD(T12, T13);
|
Chris@10
|
319 T1a = VADD(T16, T19);
|
Chris@10
|
320 ST(&(ii[0]), VADD(T15, T1a), ms, &(ii[0]));
|
Chris@10
|
321 ST(&(ii[WS(rs, 4)]), VSUB(T1a, T15), ms, &(ii[0]));
|
Chris@10
|
322 T11 = VSUB(T7, Ti);
|
Chris@10
|
323 T14 = VSUB(T12, T13);
|
Chris@10
|
324 ST(&(ri[WS(rs, 6)]), VSUB(T11, T14), ms, &(ri[0]));
|
Chris@10
|
325 ST(&(ri[WS(rs, 2)]), VADD(T11, T14), ms, &(ri[0]));
|
Chris@10
|
326 }
|
Chris@10
|
327 T1b = VSUB(TF, Tu);
|
Chris@10
|
328 T1c = VSUB(T19, T16);
|
Chris@10
|
329 ST(&(ii[WS(rs, 2)]), VADD(T1b, T1c), ms, &(ii[0]));
|
Chris@10
|
330 ST(&(ii[WS(rs, 6)]), VSUB(T1c, T1b), ms, &(ii[0]));
|
Chris@10
|
331 {
|
Chris@10
|
332 V TX, T1g, T10, T1d, TY, TZ;
|
Chris@10
|
333 TX = VSUB(TH, TK);
|
Chris@10
|
334 T1g = VSUB(T1e, T1f);
|
Chris@10
|
335 TY = VSUB(TP, TM);
|
Chris@10
|
336 TZ = VADD(TR, TU);
|
Chris@10
|
337 T10 = VMUL(LDK(KP707106781), VSUB(TY, TZ));
|
Chris@10
|
338 T1d = VMUL(LDK(KP707106781), VADD(TY, TZ));
|
Chris@10
|
339 ST(&(ri[WS(rs, 7)]), VSUB(TX, T10), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
340 ST(&(ii[WS(rs, 5)]), VSUB(T1g, T1d), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
341 ST(&(ri[WS(rs, 3)]), VADD(TX, T10), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
342 ST(&(ii[WS(rs, 1)]), VADD(T1d, T1g), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
343 }
|
Chris@10
|
344 {
|
Chris@10
|
345 V TL, T1i, TW, T1h, TQ, TV;
|
Chris@10
|
346 TL = VADD(TH, TK);
|
Chris@10
|
347 T1i = VADD(T1f, T1e);
|
Chris@10
|
348 TQ = VADD(TM, TP);
|
Chris@10
|
349 TV = VSUB(TR, TU);
|
Chris@10
|
350 TW = VMUL(LDK(KP707106781), VADD(TQ, TV));
|
Chris@10
|
351 T1h = VMUL(LDK(KP707106781), VSUB(TV, TQ));
|
Chris@10
|
352 ST(&(ri[WS(rs, 5)]), VSUB(TL, TW), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
353 ST(&(ii[WS(rs, 7)]), VSUB(T1i, T1h), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
354 ST(&(ri[WS(rs, 1)]), VADD(TL, TW), ms, &(ri[WS(rs, 1)]));
|
Chris@10
|
355 ST(&(ii[WS(rs, 3)]), VADD(T1h, T1i), ms, &(ii[WS(rs, 1)]));
|
Chris@10
|
356 }
|
Chris@10
|
357 }
|
Chris@10
|
358 }
|
Chris@10
|
359 }
|
Chris@10
|
360 VLEAVE();
|
Chris@10
|
361 }
|
Chris@10
|
362
|
Chris@10
|
363 static const tw_instr twinstr[] = {
|
Chris@10
|
364 VTW(0, 1),
|
Chris@10
|
365 VTW(0, 2),
|
Chris@10
|
366 VTW(0, 3),
|
Chris@10
|
367 VTW(0, 4),
|
Chris@10
|
368 VTW(0, 5),
|
Chris@10
|
369 VTW(0, 6),
|
Chris@10
|
370 VTW(0, 7),
|
Chris@10
|
371 {TW_NEXT, (2 * VL), 0}
|
Chris@10
|
372 };
|
Chris@10
|
373
|
Chris@10
|
374 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {52, 18, 14, 0}, 0, 0, 0 };
|
Chris@10
|
375
|
Chris@10
|
376 void XSIMD(codelet_t1sv_8) (planner *p) {
|
Chris@10
|
377 X(kdft_dit_register) (p, t1sv_8, &desc);
|
Chris@10
|
378 }
|
Chris@10
|
379 #endif /* HAVE_FMA */
|