Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:38:02 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fv_9 -include t1f.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 54 FP additions, 54 FP multiplications,
|
Chris@10
|
32 * (or, 20 additions, 20 multiplications, 34 fused multiply/add),
|
Chris@10
|
33 * 67 stack variables, 19 constants, and 18 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "t1f.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t1fv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
|
Chris@10
|
40 DVK(KP826351822, +0.826351822333069651148283373230685203999624323);
|
Chris@10
|
41 DVK(KP879385241, +0.879385241571816768108218554649462939872416269);
|
Chris@10
|
42 DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
Chris@10
|
43 DVK(KP666666666, +0.666666666666666666666666666666666666666666667);
|
Chris@10
|
44 DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
|
Chris@10
|
45 DVK(KP907603734, +0.907603734547952313649323976213898122064543220);
|
Chris@10
|
46 DVK(KP420276625, +0.420276625461206169731530603237061658838781920);
|
Chris@10
|
47 DVK(KP673648177, +0.673648177666930348851716626769314796000375677);
|
Chris@10
|
48 DVK(KP898197570, +0.898197570222573798468955502359086394667167570);
|
Chris@10
|
49 DVK(KP347296355, +0.347296355333860697703433253538629592000751354);
|
Chris@10
|
50 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
51 DVK(KP439692620, +0.439692620785908384054109277324731469936208134);
|
Chris@10
|
52 DVK(KP203604859, +0.203604859554852403062088995281827210665664861);
|
Chris@10
|
53 DVK(KP152703644, +0.152703644666139302296566746461370407999248646);
|
Chris@10
|
54 DVK(KP586256827, +0.586256827714544512072145703099641959914944179);
|
Chris@10
|
55 DVK(KP968908795, +0.968908795874236621082202410917456709164223497);
|
Chris@10
|
56 DVK(KP726681596, +0.726681596905677465811651808188092531873167623);
|
Chris@10
|
57 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
58 {
|
Chris@10
|
59 INT m;
|
Chris@10
|
60 R *x;
|
Chris@10
|
61 x = ri;
|
Chris@10
|
62 for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) {
|
Chris@10
|
63 V T1, T3, T5, T9, Th, Tb, Td, Tj, Tl, TD, T6;
|
Chris@10
|
64 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
65 {
|
Chris@10
|
66 V T2, T4, T8, Tg;
|
Chris@10
|
67 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
68 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
69 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
70 Tg = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
71 {
|
Chris@10
|
72 V Ta, Tc, Ti, Tk;
|
Chris@10
|
73 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
74 Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
75 Ti = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
76 Tk = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
77 T3 = BYTWJ(&(W[TWVL * 4]), T2);
|
Chris@10
|
78 T5 = BYTWJ(&(W[TWVL * 10]), T4);
|
Chris@10
|
79 T9 = BYTWJ(&(W[0]), T8);
|
Chris@10
|
80 Th = BYTWJ(&(W[TWVL * 2]), Tg);
|
Chris@10
|
81 Tb = BYTWJ(&(W[TWVL * 6]), Ta);
|
Chris@10
|
82 Td = BYTWJ(&(W[TWVL * 12]), Tc);
|
Chris@10
|
83 Tj = BYTWJ(&(W[TWVL * 8]), Ti);
|
Chris@10
|
84 Tl = BYTWJ(&(W[TWVL * 14]), Tk);
|
Chris@10
|
85 }
|
Chris@10
|
86 }
|
Chris@10
|
87 TD = VSUB(T5, T3);
|
Chris@10
|
88 T6 = VADD(T3, T5);
|
Chris@10
|
89 {
|
Chris@10
|
90 V Tt, Te, Tu, Tm, Tr, T7;
|
Chris@10
|
91 Tt = VSUB(Tb, Td);
|
Chris@10
|
92 Te = VADD(Tb, Td);
|
Chris@10
|
93 Tu = VSUB(Tl, Tj);
|
Chris@10
|
94 Tm = VADD(Tj, Tl);
|
Chris@10
|
95 Tr = VFNMS(LDK(KP500000000), T6, T1);
|
Chris@10
|
96 T7 = VADD(T1, T6);
|
Chris@10
|
97 {
|
Chris@10
|
98 V Tv, Tf, Ts, Tn;
|
Chris@10
|
99 Tv = VFNMS(LDK(KP500000000), Te, T9);
|
Chris@10
|
100 Tf = VADD(T9, Te);
|
Chris@10
|
101 Ts = VFNMS(LDK(KP500000000), Tm, Th);
|
Chris@10
|
102 Tn = VADD(Th, Tm);
|
Chris@10
|
103 {
|
Chris@10
|
104 V TG, TK, Tw, TJ, TF, TA, To, Tq;
|
Chris@10
|
105 TG = VFNMS(LDK(KP726681596), Tt, Tv);
|
Chris@10
|
106 TK = VFMA(LDK(KP968908795), Tv, Tt);
|
Chris@10
|
107 Tw = VFNMS(LDK(KP586256827), Tv, Tu);
|
Chris@10
|
108 TJ = VFNMS(LDK(KP152703644), Tu, Ts);
|
Chris@10
|
109 TF = VFMA(LDK(KP203604859), Ts, Tu);
|
Chris@10
|
110 TA = VFNMS(LDK(KP439692620), Tt, Ts);
|
Chris@10
|
111 To = VADD(Tf, Tn);
|
Chris@10
|
112 Tq = VMUL(LDK(KP866025403), VSUB(Tn, Tf));
|
Chris@10
|
113 {
|
Chris@10
|
114 V TQ, TH, TL, TN, TB, Tp, Ty, TI, Tx;
|
Chris@10
|
115 Tx = VFNMS(LDK(KP347296355), Tw, Tt);
|
Chris@10
|
116 TQ = VFNMS(LDK(KP898197570), TG, TF);
|
Chris@10
|
117 TH = VFMA(LDK(KP898197570), TG, TF);
|
Chris@10
|
118 TL = VFMA(LDK(KP673648177), TK, TJ);
|
Chris@10
|
119 TN = VFNMS(LDK(KP673648177), TK, TJ);
|
Chris@10
|
120 TB = VFNMS(LDK(KP420276625), TA, Tu);
|
Chris@10
|
121 ST(&(x[0]), VADD(T7, To), ms, &(x[0]));
|
Chris@10
|
122 Tp = VFNMS(LDK(KP500000000), To, T7);
|
Chris@10
|
123 Ty = VFNMS(LDK(KP907603734), Tx, Ts);
|
Chris@10
|
124 TI = VFMA(LDK(KP852868531), TH, Tr);
|
Chris@10
|
125 {
|
Chris@10
|
126 V TO, TR, TM, TC, Tz, TP, TS, TE;
|
Chris@10
|
127 TO = VFNMS(LDK(KP500000000), TH, TN);
|
Chris@10
|
128 TR = VFMA(LDK(KP666666666), TL, TQ);
|
Chris@10
|
129 TM = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), TD, TL));
|
Chris@10
|
130 TC = VFNMS(LDK(KP826351822), TB, Tv);
|
Chris@10
|
131 ST(&(x[WS(rs, 6)]), VFNMSI(Tq, Tp), ms, &(x[0]));
|
Chris@10
|
132 ST(&(x[WS(rs, 3)]), VFMAI(Tq, Tp), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
133 Tz = VFNMS(LDK(KP939692620), Ty, Tr);
|
Chris@10
|
134 TP = VFMA(LDK(KP852868531), TO, Tr);
|
Chris@10
|
135 TS = VMUL(LDK(KP866025403), VFMA(LDK(KP852868531), TR, TD));
|
Chris@10
|
136 ST(&(x[WS(rs, 8)]), VFMAI(TM, TI), ms, &(x[0]));
|
Chris@10
|
137 ST(&(x[WS(rs, 1)]), VFNMSI(TM, TI), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
138 TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), TD, TC));
|
Chris@10
|
139 ST(&(x[WS(rs, 4)]), VFMAI(TS, TP), ms, &(x[0]));
|
Chris@10
|
140 ST(&(x[WS(rs, 5)]), VFNMSI(TS, TP), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
141 ST(&(x[WS(rs, 7)]), VFMAI(TE, Tz), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
142 ST(&(x[WS(rs, 2)]), VFNMSI(TE, Tz), ms, &(x[0]));
|
Chris@10
|
143 }
|
Chris@10
|
144 }
|
Chris@10
|
145 }
|
Chris@10
|
146 }
|
Chris@10
|
147 }
|
Chris@10
|
148 }
|
Chris@10
|
149 }
|
Chris@10
|
150 VLEAVE();
|
Chris@10
|
151 }
|
Chris@10
|
152
|
Chris@10
|
153 static const tw_instr twinstr[] = {
|
Chris@10
|
154 VTW(0, 1),
|
Chris@10
|
155 VTW(0, 2),
|
Chris@10
|
156 VTW(0, 3),
|
Chris@10
|
157 VTW(0, 4),
|
Chris@10
|
158 VTW(0, 5),
|
Chris@10
|
159 VTW(0, 6),
|
Chris@10
|
160 VTW(0, 7),
|
Chris@10
|
161 VTW(0, 8),
|
Chris@10
|
162 {TW_NEXT, VL, 0}
|
Chris@10
|
163 };
|
Chris@10
|
164
|
Chris@10
|
165 static const ct_desc desc = { 9, XSIMD_STRING("t1fv_9"), twinstr, &GENUS, {20, 20, 34, 0}, 0, 0, 0 };
|
Chris@10
|
166
|
Chris@10
|
167 void XSIMD(codelet_t1fv_9) (planner *p) {
|
Chris@10
|
168 X(kdft_dit_register) (p, t1fv_9, &desc);
|
Chris@10
|
169 }
|
Chris@10
|
170 #else /* HAVE_FMA */
|
Chris@10
|
171
|
Chris@10
|
172 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fv_9 -include t1f.h */
|
Chris@10
|
173
|
Chris@10
|
174 /*
|
Chris@10
|
175 * This function contains 54 FP additions, 42 FP multiplications,
|
Chris@10
|
176 * (or, 38 additions, 26 multiplications, 16 fused multiply/add),
|
Chris@10
|
177 * 38 stack variables, 14 constants, and 18 memory accesses
|
Chris@10
|
178 */
|
Chris@10
|
179 #include "t1f.h"
|
Chris@10
|
180
|
Chris@10
|
181 static void t1fv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
182 {
|
Chris@10
|
183 DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
|
Chris@10
|
184 DVK(KP296198132, +0.296198132726023843175338011893050938967728390);
|
Chris@10
|
185 DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
|
Chris@10
|
186 DVK(KP173648177, +0.173648177666930348851716626769314796000375677);
|
Chris@10
|
187 DVK(KP556670399, +0.556670399226419366452912952047023132968291906);
|
Chris@10
|
188 DVK(KP766044443, +0.766044443118978035202392650555416673935832457);
|
Chris@10
|
189 DVK(KP642787609, +0.642787609686539326322643409907263432907559884);
|
Chris@10
|
190 DVK(KP663413948, +0.663413948168938396205421319635891297216863310);
|
Chris@10
|
191 DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
Chris@10
|
192 DVK(KP150383733, +0.150383733180435296639271897612501926072238258);
|
Chris@10
|
193 DVK(KP342020143, +0.342020143325668733044099614682259580763083368);
|
Chris@10
|
194 DVK(KP813797681, +0.813797681349373692844693217248393223289101568);
|
Chris@10
|
195 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
196 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
197 {
|
Chris@10
|
198 INT m;
|
Chris@10
|
199 R *x;
|
Chris@10
|
200 x = ri;
|
Chris@10
|
201 for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) {
|
Chris@10
|
202 V T1, T6, TA, Tt, Tf, Ts, Tw, Tn, Tv;
|
Chris@10
|
203 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
204 {
|
Chris@10
|
205 V T3, T5, T2, T4;
|
Chris@10
|
206 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
207 T3 = BYTWJ(&(W[TWVL * 4]), T2);
|
Chris@10
|
208 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
209 T5 = BYTWJ(&(W[TWVL * 10]), T4);
|
Chris@10
|
210 T6 = VADD(T3, T5);
|
Chris@10
|
211 TA = VMUL(LDK(KP866025403), VSUB(T5, T3));
|
Chris@10
|
212 }
|
Chris@10
|
213 {
|
Chris@10
|
214 V T9, Td, Tb, T8, Tc, Ta, Te;
|
Chris@10
|
215 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
216 T9 = BYTWJ(&(W[0]), T8);
|
Chris@10
|
217 Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
218 Td = BYTWJ(&(W[TWVL * 12]), Tc);
|
Chris@10
|
219 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
220 Tb = BYTWJ(&(W[TWVL * 6]), Ta);
|
Chris@10
|
221 Tt = VSUB(Td, Tb);
|
Chris@10
|
222 Te = VADD(Tb, Td);
|
Chris@10
|
223 Tf = VADD(T9, Te);
|
Chris@10
|
224 Ts = VFNMS(LDK(KP500000000), Te, T9);
|
Chris@10
|
225 }
|
Chris@10
|
226 {
|
Chris@10
|
227 V Th, Tl, Tj, Tg, Tk, Ti, Tm;
|
Chris@10
|
228 Tg = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
229 Th = BYTWJ(&(W[TWVL * 2]), Tg);
|
Chris@10
|
230 Tk = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
231 Tl = BYTWJ(&(W[TWVL * 14]), Tk);
|
Chris@10
|
232 Ti = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
233 Tj = BYTWJ(&(W[TWVL * 8]), Ti);
|
Chris@10
|
234 Tw = VSUB(Tl, Tj);
|
Chris@10
|
235 Tm = VADD(Tj, Tl);
|
Chris@10
|
236 Tn = VADD(Th, Tm);
|
Chris@10
|
237 Tv = VFNMS(LDK(KP500000000), Tm, Th);
|
Chris@10
|
238 }
|
Chris@10
|
239 {
|
Chris@10
|
240 V Tq, T7, To, Tp;
|
Chris@10
|
241 Tq = VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Tf)));
|
Chris@10
|
242 T7 = VADD(T1, T6);
|
Chris@10
|
243 To = VADD(Tf, Tn);
|
Chris@10
|
244 Tp = VFNMS(LDK(KP500000000), To, T7);
|
Chris@10
|
245 ST(&(x[0]), VADD(T7, To), ms, &(x[0]));
|
Chris@10
|
246 ST(&(x[WS(rs, 3)]), VADD(Tp, Tq), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
247 ST(&(x[WS(rs, 6)]), VSUB(Tp, Tq), ms, &(x[0]));
|
Chris@10
|
248 }
|
Chris@10
|
249 {
|
Chris@10
|
250 V TI, TB, TC, TD, Tu, Tx, Ty, Tr, TH;
|
Chris@10
|
251 TI = VBYI(VSUB(VFNMS(LDK(KP342020143), Tv, VFNMS(LDK(KP150383733), Tt, VFNMS(LDK(KP984807753), Ts, VMUL(LDK(KP813797681), Tw)))), TA));
|
Chris@10
|
252 TB = VFNMS(LDK(KP642787609), Ts, VMUL(LDK(KP663413948), Tt));
|
Chris@10
|
253 TC = VFNMS(LDK(KP984807753), Tv, VMUL(LDK(KP150383733), Tw));
|
Chris@10
|
254 TD = VADD(TB, TC);
|
Chris@10
|
255 Tu = VFMA(LDK(KP766044443), Ts, VMUL(LDK(KP556670399), Tt));
|
Chris@10
|
256 Tx = VFMA(LDK(KP173648177), Tv, VMUL(LDK(KP852868531), Tw));
|
Chris@10
|
257 Ty = VADD(Tu, Tx);
|
Chris@10
|
258 Tr = VFNMS(LDK(KP500000000), T6, T1);
|
Chris@10
|
259 TH = VFMA(LDK(KP173648177), Ts, VFNMS(LDK(KP296198132), Tw, VFNMS(LDK(KP939692620), Tv, VFNMS(LDK(KP852868531), Tt, Tr))));
|
Chris@10
|
260 ST(&(x[WS(rs, 7)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
261 ST(&(x[WS(rs, 2)]), VADD(TH, TI), ms, &(x[0]));
|
Chris@10
|
262 {
|
Chris@10
|
263 V Tz, TE, TF, TG;
|
Chris@10
|
264 Tz = VADD(Tr, Ty);
|
Chris@10
|
265 TE = VBYI(VADD(TA, TD));
|
Chris@10
|
266 ST(&(x[WS(rs, 8)]), VSUB(Tz, TE), ms, &(x[0]));
|
Chris@10
|
267 ST(&(x[WS(rs, 1)]), VADD(TE, Tz), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
268 TF = VFMA(LDK(KP866025403), VSUB(TB, TC), VFNMS(LDK(KP500000000), Ty, Tr));
|
Chris@10
|
269 TG = VBYI(VADD(TA, VFNMS(LDK(KP500000000), TD, VMUL(LDK(KP866025403), VSUB(Tx, Tu)))));
|
Chris@10
|
270 ST(&(x[WS(rs, 5)]), VSUB(TF, TG), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
271 ST(&(x[WS(rs, 4)]), VADD(TF, TG), ms, &(x[0]));
|
Chris@10
|
272 }
|
Chris@10
|
273 }
|
Chris@10
|
274 }
|
Chris@10
|
275 }
|
Chris@10
|
276 VLEAVE();
|
Chris@10
|
277 }
|
Chris@10
|
278
|
Chris@10
|
279 static const tw_instr twinstr[] = {
|
Chris@10
|
280 VTW(0, 1),
|
Chris@10
|
281 VTW(0, 2),
|
Chris@10
|
282 VTW(0, 3),
|
Chris@10
|
283 VTW(0, 4),
|
Chris@10
|
284 VTW(0, 5),
|
Chris@10
|
285 VTW(0, 6),
|
Chris@10
|
286 VTW(0, 7),
|
Chris@10
|
287 VTW(0, 8),
|
Chris@10
|
288 {TW_NEXT, VL, 0}
|
Chris@10
|
289 };
|
Chris@10
|
290
|
Chris@10
|
291 static const ct_desc desc = { 9, XSIMD_STRING("t1fv_9"), twinstr, &GENUS, {38, 26, 16, 0}, 0, 0, 0 };
|
Chris@10
|
292
|
Chris@10
|
293 void XSIMD(codelet_t1fv_9) (planner *p) {
|
Chris@10
|
294 X(kdft_dit_register) (p, t1fv_9, &desc);
|
Chris@10
|
295 }
|
Chris@10
|
296 #endif /* HAVE_FMA */
|