annotate src/fftw-3.3.3/dft/simd/common/t1fv_8.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:38:02 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1fv_8 -include t1f.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 33 FP additions, 24 FP multiplications,
Chris@10 32 * (or, 23 additions, 14 multiplications, 10 fused multiply/add),
Chris@10 33 * 36 stack variables, 1 constants, and 16 memory accesses
Chris@10 34 */
Chris@10 35 #include "t1f.h"
Chris@10 36
Chris@10 37 static void t1fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 40 {
Chris@10 41 INT m;
Chris@10 42 R *x;
Chris@10 43 x = ri;
Chris@10 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@10 45 V T1, T2, Th, Tj, T5, T7, Ta, Tc;
Chris@10 46 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 47 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 48 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 49 Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 50 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 51 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 52 Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@10 53 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 54 {
Chris@10 55 V T3, Ti, Tk, T6, T8, Tb, Td;
Chris@10 56 T3 = BYTWJ(&(W[TWVL * 6]), T2);
Chris@10 57 Ti = BYTWJ(&(W[TWVL * 2]), Th);
Chris@10 58 Tk = BYTWJ(&(W[TWVL * 10]), Tj);
Chris@10 59 T6 = BYTWJ(&(W[0]), T5);
Chris@10 60 T8 = BYTWJ(&(W[TWVL * 8]), T7);
Chris@10 61 Tb = BYTWJ(&(W[TWVL * 12]), Ta);
Chris@10 62 Td = BYTWJ(&(W[TWVL * 4]), Tc);
Chris@10 63 {
Chris@10 64 V Tq, T4, Tr, Tl, Tt, T9, Tu, Te, Tw, Ts;
Chris@10 65 Tq = VADD(T1, T3);
Chris@10 66 T4 = VSUB(T1, T3);
Chris@10 67 Tr = VADD(Ti, Tk);
Chris@10 68 Tl = VSUB(Ti, Tk);
Chris@10 69 Tt = VADD(T6, T8);
Chris@10 70 T9 = VSUB(T6, T8);
Chris@10 71 Tu = VADD(Tb, Td);
Chris@10 72 Te = VSUB(Tb, Td);
Chris@10 73 Tw = VSUB(Tq, Tr);
Chris@10 74 Ts = VADD(Tq, Tr);
Chris@10 75 {
Chris@10 76 V Tx, Tv, Tm, Tf;
Chris@10 77 Tx = VSUB(Tu, Tt);
Chris@10 78 Tv = VADD(Tt, Tu);
Chris@10 79 Tm = VSUB(Te, T9);
Chris@10 80 Tf = VADD(T9, Te);
Chris@10 81 {
Chris@10 82 V Tp, Tn, To, Tg;
Chris@10 83 ST(&(x[WS(rs, 2)]), VFMAI(Tx, Tw), ms, &(x[0]));
Chris@10 84 ST(&(x[WS(rs, 6)]), VFNMSI(Tx, Tw), ms, &(x[0]));
Chris@10 85 ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0]));
Chris@10 86 ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0]));
Chris@10 87 Tp = VFMA(LDK(KP707106781), Tm, Tl);
Chris@10 88 Tn = VFNMS(LDK(KP707106781), Tm, Tl);
Chris@10 89 To = VFNMS(LDK(KP707106781), Tf, T4);
Chris@10 90 Tg = VFMA(LDK(KP707106781), Tf, T4);
Chris@10 91 ST(&(x[WS(rs, 5)]), VFNMSI(Tp, To), ms, &(x[WS(rs, 1)]));
Chris@10 92 ST(&(x[WS(rs, 3)]), VFMAI(Tp, To), ms, &(x[WS(rs, 1)]));
Chris@10 93 ST(&(x[WS(rs, 7)]), VFMAI(Tn, Tg), ms, &(x[WS(rs, 1)]));
Chris@10 94 ST(&(x[WS(rs, 1)]), VFNMSI(Tn, Tg), ms, &(x[WS(rs, 1)]));
Chris@10 95 }
Chris@10 96 }
Chris@10 97 }
Chris@10 98 }
Chris@10 99 }
Chris@10 100 }
Chris@10 101 VLEAVE();
Chris@10 102 }
Chris@10 103
Chris@10 104 static const tw_instr twinstr[] = {
Chris@10 105 VTW(0, 1),
Chris@10 106 VTW(0, 2),
Chris@10 107 VTW(0, 3),
Chris@10 108 VTW(0, 4),
Chris@10 109 VTW(0, 5),
Chris@10 110 VTW(0, 6),
Chris@10 111 VTW(0, 7),
Chris@10 112 {TW_NEXT, VL, 0}
Chris@10 113 };
Chris@10 114
Chris@10 115 static const ct_desc desc = { 8, XSIMD_STRING("t1fv_8"), twinstr, &GENUS, {23, 14, 10, 0}, 0, 0, 0 };
Chris@10 116
Chris@10 117 void XSIMD(codelet_t1fv_8) (planner *p) {
Chris@10 118 X(kdft_dit_register) (p, t1fv_8, &desc);
Chris@10 119 }
Chris@10 120 #else /* HAVE_FMA */
Chris@10 121
Chris@10 122 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1fv_8 -include t1f.h */
Chris@10 123
Chris@10 124 /*
Chris@10 125 * This function contains 33 FP additions, 16 FP multiplications,
Chris@10 126 * (or, 33 additions, 16 multiplications, 0 fused multiply/add),
Chris@10 127 * 24 stack variables, 1 constants, and 16 memory accesses
Chris@10 128 */
Chris@10 129 #include "t1f.h"
Chris@10 130
Chris@10 131 static void t1fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 132 {
Chris@10 133 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 134 {
Chris@10 135 INT m;
Chris@10 136 R *x;
Chris@10 137 x = ri;
Chris@10 138 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@10 139 V T4, Tq, Tm, Tr, T9, Tt, Te, Tu, T1, T3, T2;
Chris@10 140 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 141 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 142 T3 = BYTWJ(&(W[TWVL * 6]), T2);
Chris@10 143 T4 = VSUB(T1, T3);
Chris@10 144 Tq = VADD(T1, T3);
Chris@10 145 {
Chris@10 146 V Tj, Tl, Ti, Tk;
Chris@10 147 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 148 Tj = BYTWJ(&(W[TWVL * 2]), Ti);
Chris@10 149 Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 150 Tl = BYTWJ(&(W[TWVL * 10]), Tk);
Chris@10 151 Tm = VSUB(Tj, Tl);
Chris@10 152 Tr = VADD(Tj, Tl);
Chris@10 153 }
Chris@10 154 {
Chris@10 155 V T6, T8, T5, T7;
Chris@10 156 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 157 T6 = BYTWJ(&(W[0]), T5);
Chris@10 158 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 159 T8 = BYTWJ(&(W[TWVL * 8]), T7);
Chris@10 160 T9 = VSUB(T6, T8);
Chris@10 161 Tt = VADD(T6, T8);
Chris@10 162 }
Chris@10 163 {
Chris@10 164 V Tb, Td, Ta, Tc;
Chris@10 165 Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@10 166 Tb = BYTWJ(&(W[TWVL * 12]), Ta);
Chris@10 167 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 168 Td = BYTWJ(&(W[TWVL * 4]), Tc);
Chris@10 169 Te = VSUB(Tb, Td);
Chris@10 170 Tu = VADD(Tb, Td);
Chris@10 171 }
Chris@10 172 {
Chris@10 173 V Ts, Tv, Tw, Tx;
Chris@10 174 Ts = VADD(Tq, Tr);
Chris@10 175 Tv = VADD(Tt, Tu);
Chris@10 176 ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0]));
Chris@10 177 ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0]));
Chris@10 178 Tw = VSUB(Tq, Tr);
Chris@10 179 Tx = VBYI(VSUB(Tu, Tt));
Chris@10 180 ST(&(x[WS(rs, 6)]), VSUB(Tw, Tx), ms, &(x[0]));
Chris@10 181 ST(&(x[WS(rs, 2)]), VADD(Tw, Tx), ms, &(x[0]));
Chris@10 182 {
Chris@10 183 V Tg, To, Tn, Tp, Tf, Th;
Chris@10 184 Tf = VMUL(LDK(KP707106781), VADD(T9, Te));
Chris@10 185 Tg = VADD(T4, Tf);
Chris@10 186 To = VSUB(T4, Tf);
Chris@10 187 Th = VMUL(LDK(KP707106781), VSUB(Te, T9));
Chris@10 188 Tn = VBYI(VSUB(Th, Tm));
Chris@10 189 Tp = VBYI(VADD(Tm, Th));
Chris@10 190 ST(&(x[WS(rs, 7)]), VSUB(Tg, Tn), ms, &(x[WS(rs, 1)]));
Chris@10 191 ST(&(x[WS(rs, 3)]), VADD(To, Tp), ms, &(x[WS(rs, 1)]));
Chris@10 192 ST(&(x[WS(rs, 1)]), VADD(Tg, Tn), ms, &(x[WS(rs, 1)]));
Chris@10 193 ST(&(x[WS(rs, 5)]), VSUB(To, Tp), ms, &(x[WS(rs, 1)]));
Chris@10 194 }
Chris@10 195 }
Chris@10 196 }
Chris@10 197 }
Chris@10 198 VLEAVE();
Chris@10 199 }
Chris@10 200
Chris@10 201 static const tw_instr twinstr[] = {
Chris@10 202 VTW(0, 1),
Chris@10 203 VTW(0, 2),
Chris@10 204 VTW(0, 3),
Chris@10 205 VTW(0, 4),
Chris@10 206 VTW(0, 5),
Chris@10 207 VTW(0, 6),
Chris@10 208 VTW(0, 7),
Chris@10 209 {TW_NEXT, VL, 0}
Chris@10 210 };
Chris@10 211
Chris@10 212 static const ct_desc desc = { 8, XSIMD_STRING("t1fv_8"), twinstr, &GENUS, {33, 16, 0, 0}, 0, 0, 0 };
Chris@10 213
Chris@10 214 void XSIMD(codelet_t1fv_8) (planner *p) {
Chris@10 215 X(kdft_dit_register) (p, t1fv_8, &desc);
Chris@10 216 }
Chris@10 217 #endif /* HAVE_FMA */