Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:38:05 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t1fv_16 -include t1f.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 87 FP additions, 64 FP multiplications,
|
Chris@10
|
32 * (or, 53 additions, 30 multiplications, 34 fused multiply/add),
|
Chris@10
|
33 * 61 stack variables, 3 constants, and 32 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "t1f.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t1fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
Chris@10
|
40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
|
Chris@10
|
41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
42 {
|
Chris@10
|
43 INT m;
|
Chris@10
|
44 R *x;
|
Chris@10
|
45 x = ri;
|
Chris@10
|
46 for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) {
|
Chris@10
|
47 V TO, Ta, TJ, TP, T14, Tq, T1i, T10, T1b, T1l, T13, T1c, TR, Tl, T15;
|
Chris@10
|
48 V Tv;
|
Chris@10
|
49 {
|
Chris@10
|
50 V Tc, TW, T4, T19, T9, TD, TI, Tj, TZ, T1a, Te, Th, Tn, Tr, Tu;
|
Chris@10
|
51 V Tp;
|
Chris@10
|
52 {
|
Chris@10
|
53 V T1, T2, T5, T7;
|
Chris@10
|
54 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
55 T2 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
56 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
57 T7 = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
Chris@10
|
58 {
|
Chris@10
|
59 V Tz, TG, TB, TE;
|
Chris@10
|
60 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
Chris@10
|
61 TG = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
62 TB = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
63 TE = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
64 {
|
Chris@10
|
65 V Ti, TY, TX, Td, Tg, Tm, Tt, To;
|
Chris@10
|
66 {
|
Chris@10
|
67 V T3, T6, T8, TA, TH, TC, TF, Tb;
|
Chris@10
|
68 Tb = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
69 T3 = BYTWJ(&(W[TWVL * 14]), T2);
|
Chris@10
|
70 T6 = BYTWJ(&(W[TWVL * 6]), T5);
|
Chris@10
|
71 T8 = BYTWJ(&(W[TWVL * 22]), T7);
|
Chris@10
|
72 TA = BYTWJ(&(W[TWVL * 26]), Tz);
|
Chris@10
|
73 TH = BYTWJ(&(W[TWVL * 18]), TG);
|
Chris@10
|
74 TC = BYTWJ(&(W[TWVL * 10]), TB);
|
Chris@10
|
75 TF = BYTWJ(&(W[TWVL * 2]), TE);
|
Chris@10
|
76 Tc = BYTWJ(&(W[0]), Tb);
|
Chris@10
|
77 TW = VSUB(T1, T3);
|
Chris@10
|
78 T4 = VADD(T1, T3);
|
Chris@10
|
79 T19 = VSUB(T6, T8);
|
Chris@10
|
80 T9 = VADD(T6, T8);
|
Chris@10
|
81 Ti = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
82 TD = VADD(TA, TC);
|
Chris@10
|
83 TY = VSUB(TA, TC);
|
Chris@10
|
84 TI = VADD(TF, TH);
|
Chris@10
|
85 TX = VSUB(TF, TH);
|
Chris@10
|
86 }
|
Chris@10
|
87 Td = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
88 Tg = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
89 Tm = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
90 Tj = BYTWJ(&(W[TWVL * 24]), Ti);
|
Chris@10
|
91 Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
92 To = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
93 TZ = VADD(TX, TY);
|
Chris@10
|
94 T1a = VSUB(TY, TX);
|
Chris@10
|
95 Te = BYTWJ(&(W[TWVL * 16]), Td);
|
Chris@10
|
96 Th = BYTWJ(&(W[TWVL * 8]), Tg);
|
Chris@10
|
97 Tn = BYTWJ(&(W[TWVL * 28]), Tm);
|
Chris@10
|
98 Tr = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
99 Tu = BYTWJ(&(W[TWVL * 20]), Tt);
|
Chris@10
|
100 Tp = BYTWJ(&(W[TWVL * 12]), To);
|
Chris@10
|
101 }
|
Chris@10
|
102 }
|
Chris@10
|
103 }
|
Chris@10
|
104 {
|
Chris@10
|
105 V Tf, T11, Tk, T12, Ts;
|
Chris@10
|
106 TO = VADD(T4, T9);
|
Chris@10
|
107 Ta = VSUB(T4, T9);
|
Chris@10
|
108 TJ = VSUB(TD, TI);
|
Chris@10
|
109 TP = VADD(TI, TD);
|
Chris@10
|
110 Tf = VADD(Tc, Te);
|
Chris@10
|
111 T11 = VSUB(Tc, Te);
|
Chris@10
|
112 Tk = VADD(Th, Tj);
|
Chris@10
|
113 T12 = VSUB(Th, Tj);
|
Chris@10
|
114 Ts = BYTWJ(&(W[TWVL * 4]), Tr);
|
Chris@10
|
115 T14 = VSUB(Tn, Tp);
|
Chris@10
|
116 Tq = VADD(Tn, Tp);
|
Chris@10
|
117 T1i = VFNMS(LDK(KP707106781), TZ, TW);
|
Chris@10
|
118 T10 = VFMA(LDK(KP707106781), TZ, TW);
|
Chris@10
|
119 T1b = VFNMS(LDK(KP707106781), T1a, T19);
|
Chris@10
|
120 T1l = VFMA(LDK(KP707106781), T1a, T19);
|
Chris@10
|
121 T13 = VFNMS(LDK(KP414213562), T12, T11);
|
Chris@10
|
122 T1c = VFMA(LDK(KP414213562), T11, T12);
|
Chris@10
|
123 TR = VADD(Tf, Tk);
|
Chris@10
|
124 Tl = VSUB(Tf, Tk);
|
Chris@10
|
125 T15 = VSUB(Tu, Ts);
|
Chris@10
|
126 Tv = VADD(Ts, Tu);
|
Chris@10
|
127 }
|
Chris@10
|
128 }
|
Chris@10
|
129 {
|
Chris@10
|
130 V T1d, T16, TS, Tw, TU, TQ;
|
Chris@10
|
131 T1d = VFMA(LDK(KP414213562), T14, T15);
|
Chris@10
|
132 T16 = VFNMS(LDK(KP414213562), T15, T14);
|
Chris@10
|
133 TS = VADD(Tq, Tv);
|
Chris@10
|
134 Tw = VSUB(Tq, Tv);
|
Chris@10
|
135 TU = VSUB(TO, TP);
|
Chris@10
|
136 TQ = VADD(TO, TP);
|
Chris@10
|
137 {
|
Chris@10
|
138 V T1e, T1j, T17, T1m;
|
Chris@10
|
139 T1e = VSUB(T1c, T1d);
|
Chris@10
|
140 T1j = VADD(T1c, T1d);
|
Chris@10
|
141 T17 = VADD(T13, T16);
|
Chris@10
|
142 T1m = VSUB(T16, T13);
|
Chris@10
|
143 {
|
Chris@10
|
144 V TV, TT, TK, Tx;
|
Chris@10
|
145 TV = VSUB(TS, TR);
|
Chris@10
|
146 TT = VADD(TR, TS);
|
Chris@10
|
147 TK = VSUB(Tw, Tl);
|
Chris@10
|
148 Tx = VADD(Tl, Tw);
|
Chris@10
|
149 {
|
Chris@10
|
150 V T1h, T1f, T1o, T1k;
|
Chris@10
|
151 T1h = VFMA(LDK(KP923879532), T1e, T1b);
|
Chris@10
|
152 T1f = VFNMS(LDK(KP923879532), T1e, T1b);
|
Chris@10
|
153 T1o = VFMA(LDK(KP923879532), T1j, T1i);
|
Chris@10
|
154 T1k = VFNMS(LDK(KP923879532), T1j, T1i);
|
Chris@10
|
155 {
|
Chris@10
|
156 V T1g, T18, T1p, T1n;
|
Chris@10
|
157 T1g = VFMA(LDK(KP923879532), T17, T10);
|
Chris@10
|
158 T18 = VFNMS(LDK(KP923879532), T17, T10);
|
Chris@10
|
159 T1p = VFMA(LDK(KP923879532), T1m, T1l);
|
Chris@10
|
160 T1n = VFNMS(LDK(KP923879532), T1m, T1l);
|
Chris@10
|
161 ST(&(x[WS(rs, 12)]), VFNMSI(TV, TU), ms, &(x[0]));
|
Chris@10
|
162 ST(&(x[WS(rs, 4)]), VFMAI(TV, TU), ms, &(x[0]));
|
Chris@10
|
163 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0]));
|
Chris@10
|
164 ST(&(x[WS(rs, 8)]), VSUB(TQ, TT), ms, &(x[0]));
|
Chris@10
|
165 {
|
Chris@10
|
166 V TN, TL, TM, Ty;
|
Chris@10
|
167 TN = VFMA(LDK(KP707106781), TK, TJ);
|
Chris@10
|
168 TL = VFNMS(LDK(KP707106781), TK, TJ);
|
Chris@10
|
169 TM = VFMA(LDK(KP707106781), Tx, Ta);
|
Chris@10
|
170 Ty = VFNMS(LDK(KP707106781), Tx, Ta);
|
Chris@10
|
171 ST(&(x[WS(rs, 1)]), VFNMSI(T1h, T1g), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
172 ST(&(x[WS(rs, 15)]), VFMAI(T1h, T1g), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
173 ST(&(x[WS(rs, 7)]), VFMAI(T1f, T18), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
174 ST(&(x[WS(rs, 9)]), VFNMSI(T1f, T18), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
175 ST(&(x[WS(rs, 3)]), VFMAI(T1p, T1o), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
176 ST(&(x[WS(rs, 13)]), VFNMSI(T1p, T1o), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
177 ST(&(x[WS(rs, 11)]), VFMAI(T1n, T1k), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
178 ST(&(x[WS(rs, 5)]), VFNMSI(T1n, T1k), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
179 ST(&(x[WS(rs, 14)]), VFNMSI(TN, TM), ms, &(x[0]));
|
Chris@10
|
180 ST(&(x[WS(rs, 2)]), VFMAI(TN, TM), ms, &(x[0]));
|
Chris@10
|
181 ST(&(x[WS(rs, 10)]), VFMAI(TL, Ty), ms, &(x[0]));
|
Chris@10
|
182 ST(&(x[WS(rs, 6)]), VFNMSI(TL, Ty), ms, &(x[0]));
|
Chris@10
|
183 }
|
Chris@10
|
184 }
|
Chris@10
|
185 }
|
Chris@10
|
186 }
|
Chris@10
|
187 }
|
Chris@10
|
188 }
|
Chris@10
|
189 }
|
Chris@10
|
190 }
|
Chris@10
|
191 VLEAVE();
|
Chris@10
|
192 }
|
Chris@10
|
193
|
Chris@10
|
194 static const tw_instr twinstr[] = {
|
Chris@10
|
195 VTW(0, 1),
|
Chris@10
|
196 VTW(0, 2),
|
Chris@10
|
197 VTW(0, 3),
|
Chris@10
|
198 VTW(0, 4),
|
Chris@10
|
199 VTW(0, 5),
|
Chris@10
|
200 VTW(0, 6),
|
Chris@10
|
201 VTW(0, 7),
|
Chris@10
|
202 VTW(0, 8),
|
Chris@10
|
203 VTW(0, 9),
|
Chris@10
|
204 VTW(0, 10),
|
Chris@10
|
205 VTW(0, 11),
|
Chris@10
|
206 VTW(0, 12),
|
Chris@10
|
207 VTW(0, 13),
|
Chris@10
|
208 VTW(0, 14),
|
Chris@10
|
209 VTW(0, 15),
|
Chris@10
|
210 {TW_NEXT, VL, 0}
|
Chris@10
|
211 };
|
Chris@10
|
212
|
Chris@10
|
213 static const ct_desc desc = { 16, XSIMD_STRING("t1fv_16"), twinstr, &GENUS, {53, 30, 34, 0}, 0, 0, 0 };
|
Chris@10
|
214
|
Chris@10
|
215 void XSIMD(codelet_t1fv_16) (planner *p) {
|
Chris@10
|
216 X(kdft_dit_register) (p, t1fv_16, &desc);
|
Chris@10
|
217 }
|
Chris@10
|
218 #else /* HAVE_FMA */
|
Chris@10
|
219
|
Chris@10
|
220 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t1fv_16 -include t1f.h */
|
Chris@10
|
221
|
Chris@10
|
222 /*
|
Chris@10
|
223 * This function contains 87 FP additions, 42 FP multiplications,
|
Chris@10
|
224 * (or, 83 additions, 38 multiplications, 4 fused multiply/add),
|
Chris@10
|
225 * 36 stack variables, 3 constants, and 32 memory accesses
|
Chris@10
|
226 */
|
Chris@10
|
227 #include "t1f.h"
|
Chris@10
|
228
|
Chris@10
|
229 static void t1fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
230 {
|
Chris@10
|
231 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
Chris@10
|
232 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
|
Chris@10
|
233 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
234 {
|
Chris@10
|
235 INT m;
|
Chris@10
|
236 R *x;
|
Chris@10
|
237 x = ri;
|
Chris@10
|
238 for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) {
|
Chris@10
|
239 V TJ, T10, TD, T11, T1b, T1c, Ty, TK, T16, T17, T18, Tb, TN, T13, T14;
|
Chris@10
|
240 V T15, Tm, TM, TG, TI, TH;
|
Chris@10
|
241 TG = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
242 TH = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
243 TI = BYTWJ(&(W[TWVL * 14]), TH);
|
Chris@10
|
244 TJ = VSUB(TG, TI);
|
Chris@10
|
245 T10 = VADD(TG, TI);
|
Chris@10
|
246 {
|
Chris@10
|
247 V TA, TC, Tz, TB;
|
Chris@10
|
248 Tz = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
249 TA = BYTWJ(&(W[TWVL * 6]), Tz);
|
Chris@10
|
250 TB = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
Chris@10
|
251 TC = BYTWJ(&(W[TWVL * 22]), TB);
|
Chris@10
|
252 TD = VSUB(TA, TC);
|
Chris@10
|
253 T11 = VADD(TA, TC);
|
Chris@10
|
254 }
|
Chris@10
|
255 {
|
Chris@10
|
256 V Tp, Tw, Tr, Tu, Ts, Tx;
|
Chris@10
|
257 {
|
Chris@10
|
258 V To, Tv, Tq, Tt;
|
Chris@10
|
259 To = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
Chris@10
|
260 Tp = BYTWJ(&(W[TWVL * 26]), To);
|
Chris@10
|
261 Tv = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
262 Tw = BYTWJ(&(W[TWVL * 18]), Tv);
|
Chris@10
|
263 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
264 Tr = BYTWJ(&(W[TWVL * 10]), Tq);
|
Chris@10
|
265 Tt = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
266 Tu = BYTWJ(&(W[TWVL * 2]), Tt);
|
Chris@10
|
267 }
|
Chris@10
|
268 T1b = VADD(Tp, Tr);
|
Chris@10
|
269 T1c = VADD(Tu, Tw);
|
Chris@10
|
270 Ts = VSUB(Tp, Tr);
|
Chris@10
|
271 Tx = VSUB(Tu, Tw);
|
Chris@10
|
272 Ty = VMUL(LDK(KP707106781), VSUB(Ts, Tx));
|
Chris@10
|
273 TK = VMUL(LDK(KP707106781), VADD(Tx, Ts));
|
Chris@10
|
274 }
|
Chris@10
|
275 {
|
Chris@10
|
276 V T2, T9, T4, T7, T5, Ta;
|
Chris@10
|
277 {
|
Chris@10
|
278 V T1, T8, T3, T6;
|
Chris@10
|
279 T1 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
280 T2 = BYTWJ(&(W[TWVL * 28]), T1);
|
Chris@10
|
281 T8 = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
282 T9 = BYTWJ(&(W[TWVL * 20]), T8);
|
Chris@10
|
283 T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
284 T4 = BYTWJ(&(W[TWVL * 12]), T3);
|
Chris@10
|
285 T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
286 T7 = BYTWJ(&(W[TWVL * 4]), T6);
|
Chris@10
|
287 }
|
Chris@10
|
288 T16 = VADD(T2, T4);
|
Chris@10
|
289 T17 = VADD(T7, T9);
|
Chris@10
|
290 T18 = VSUB(T16, T17);
|
Chris@10
|
291 T5 = VSUB(T2, T4);
|
Chris@10
|
292 Ta = VSUB(T7, T9);
|
Chris@10
|
293 Tb = VFNMS(LDK(KP923879532), Ta, VMUL(LDK(KP382683432), T5));
|
Chris@10
|
294 TN = VFMA(LDK(KP923879532), T5, VMUL(LDK(KP382683432), Ta));
|
Chris@10
|
295 }
|
Chris@10
|
296 {
|
Chris@10
|
297 V Td, Tk, Tf, Ti, Tg, Tl;
|
Chris@10
|
298 {
|
Chris@10
|
299 V Tc, Tj, Te, Th;
|
Chris@10
|
300 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
301 Td = BYTWJ(&(W[0]), Tc);
|
Chris@10
|
302 Tj = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
303 Tk = BYTWJ(&(W[TWVL * 24]), Tj);
|
Chris@10
|
304 Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
305 Tf = BYTWJ(&(W[TWVL * 16]), Te);
|
Chris@10
|
306 Th = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
307 Ti = BYTWJ(&(W[TWVL * 8]), Th);
|
Chris@10
|
308 }
|
Chris@10
|
309 T13 = VADD(Td, Tf);
|
Chris@10
|
310 T14 = VADD(Ti, Tk);
|
Chris@10
|
311 T15 = VSUB(T13, T14);
|
Chris@10
|
312 Tg = VSUB(Td, Tf);
|
Chris@10
|
313 Tl = VSUB(Ti, Tk);
|
Chris@10
|
314 Tm = VFMA(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), Tl));
|
Chris@10
|
315 TM = VFNMS(LDK(KP382683432), Tl, VMUL(LDK(KP923879532), Tg));
|
Chris@10
|
316 }
|
Chris@10
|
317 {
|
Chris@10
|
318 V T1a, T1g, T1f, T1h;
|
Chris@10
|
319 {
|
Chris@10
|
320 V T12, T19, T1d, T1e;
|
Chris@10
|
321 T12 = VSUB(T10, T11);
|
Chris@10
|
322 T19 = VMUL(LDK(KP707106781), VADD(T15, T18));
|
Chris@10
|
323 T1a = VADD(T12, T19);
|
Chris@10
|
324 T1g = VSUB(T12, T19);
|
Chris@10
|
325 T1d = VSUB(T1b, T1c);
|
Chris@10
|
326 T1e = VMUL(LDK(KP707106781), VSUB(T18, T15));
|
Chris@10
|
327 T1f = VBYI(VADD(T1d, T1e));
|
Chris@10
|
328 T1h = VBYI(VSUB(T1e, T1d));
|
Chris@10
|
329 }
|
Chris@10
|
330 ST(&(x[WS(rs, 14)]), VSUB(T1a, T1f), ms, &(x[0]));
|
Chris@10
|
331 ST(&(x[WS(rs, 6)]), VADD(T1g, T1h), ms, &(x[0]));
|
Chris@10
|
332 ST(&(x[WS(rs, 2)]), VADD(T1a, T1f), ms, &(x[0]));
|
Chris@10
|
333 ST(&(x[WS(rs, 10)]), VSUB(T1g, T1h), ms, &(x[0]));
|
Chris@10
|
334 }
|
Chris@10
|
335 {
|
Chris@10
|
336 V T1k, T1o, T1n, T1p;
|
Chris@10
|
337 {
|
Chris@10
|
338 V T1i, T1j, T1l, T1m;
|
Chris@10
|
339 T1i = VADD(T10, T11);
|
Chris@10
|
340 T1j = VADD(T1c, T1b);
|
Chris@10
|
341 T1k = VADD(T1i, T1j);
|
Chris@10
|
342 T1o = VSUB(T1i, T1j);
|
Chris@10
|
343 T1l = VADD(T13, T14);
|
Chris@10
|
344 T1m = VADD(T16, T17);
|
Chris@10
|
345 T1n = VADD(T1l, T1m);
|
Chris@10
|
346 T1p = VBYI(VSUB(T1m, T1l));
|
Chris@10
|
347 }
|
Chris@10
|
348 ST(&(x[WS(rs, 8)]), VSUB(T1k, T1n), ms, &(x[0]));
|
Chris@10
|
349 ST(&(x[WS(rs, 4)]), VADD(T1o, T1p), ms, &(x[0]));
|
Chris@10
|
350 ST(&(x[0]), VADD(T1k, T1n), ms, &(x[0]));
|
Chris@10
|
351 ST(&(x[WS(rs, 12)]), VSUB(T1o, T1p), ms, &(x[0]));
|
Chris@10
|
352 }
|
Chris@10
|
353 {
|
Chris@10
|
354 V TF, TQ, TP, TR;
|
Chris@10
|
355 {
|
Chris@10
|
356 V Tn, TE, TL, TO;
|
Chris@10
|
357 Tn = VSUB(Tb, Tm);
|
Chris@10
|
358 TE = VSUB(Ty, TD);
|
Chris@10
|
359 TF = VBYI(VSUB(Tn, TE));
|
Chris@10
|
360 TQ = VBYI(VADD(TE, Tn));
|
Chris@10
|
361 TL = VADD(TJ, TK);
|
Chris@10
|
362 TO = VADD(TM, TN);
|
Chris@10
|
363 TP = VSUB(TL, TO);
|
Chris@10
|
364 TR = VADD(TL, TO);
|
Chris@10
|
365 }
|
Chris@10
|
366 ST(&(x[WS(rs, 7)]), VADD(TF, TP), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
367 ST(&(x[WS(rs, 15)]), VSUB(TR, TQ), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
368 ST(&(x[WS(rs, 9)]), VSUB(TP, TF), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
369 ST(&(x[WS(rs, 1)]), VADD(TQ, TR), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
370 }
|
Chris@10
|
371 {
|
Chris@10
|
372 V TU, TY, TX, TZ;
|
Chris@10
|
373 {
|
Chris@10
|
374 V TS, TT, TV, TW;
|
Chris@10
|
375 TS = VSUB(TJ, TK);
|
Chris@10
|
376 TT = VADD(Tm, Tb);
|
Chris@10
|
377 TU = VADD(TS, TT);
|
Chris@10
|
378 TY = VSUB(TS, TT);
|
Chris@10
|
379 TV = VADD(TD, Ty);
|
Chris@10
|
380 TW = VSUB(TN, TM);
|
Chris@10
|
381 TX = VBYI(VADD(TV, TW));
|
Chris@10
|
382 TZ = VBYI(VSUB(TW, TV));
|
Chris@10
|
383 }
|
Chris@10
|
384 ST(&(x[WS(rs, 13)]), VSUB(TU, TX), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
385 ST(&(x[WS(rs, 5)]), VADD(TY, TZ), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
386 ST(&(x[WS(rs, 3)]), VADD(TU, TX), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
387 ST(&(x[WS(rs, 11)]), VSUB(TY, TZ), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
388 }
|
Chris@10
|
389 }
|
Chris@10
|
390 }
|
Chris@10
|
391 VLEAVE();
|
Chris@10
|
392 }
|
Chris@10
|
393
|
Chris@10
|
394 static const tw_instr twinstr[] = {
|
Chris@10
|
395 VTW(0, 1),
|
Chris@10
|
396 VTW(0, 2),
|
Chris@10
|
397 VTW(0, 3),
|
Chris@10
|
398 VTW(0, 4),
|
Chris@10
|
399 VTW(0, 5),
|
Chris@10
|
400 VTW(0, 6),
|
Chris@10
|
401 VTW(0, 7),
|
Chris@10
|
402 VTW(0, 8),
|
Chris@10
|
403 VTW(0, 9),
|
Chris@10
|
404 VTW(0, 10),
|
Chris@10
|
405 VTW(0, 11),
|
Chris@10
|
406 VTW(0, 12),
|
Chris@10
|
407 VTW(0, 13),
|
Chris@10
|
408 VTW(0, 14),
|
Chris@10
|
409 VTW(0, 15),
|
Chris@10
|
410 {TW_NEXT, VL, 0}
|
Chris@10
|
411 };
|
Chris@10
|
412
|
Chris@10
|
413 static const ct_desc desc = { 16, XSIMD_STRING("t1fv_16"), twinstr, &GENUS, {83, 38, 4, 0}, 0, 0, 0 };
|
Chris@10
|
414
|
Chris@10
|
415 void XSIMD(codelet_t1fv_16) (planner *p) {
|
Chris@10
|
416 X(kdft_dit_register) (p, t1fv_16, &desc);
|
Chris@10
|
417 }
|
Chris@10
|
418 #endif /* HAVE_FMA */
|