Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:38:04 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1fv_15 -include t1f.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 92 FP additions, 77 FP multiplications,
|
Chris@10
|
32 * (or, 50 additions, 35 multiplications, 42 fused multiply/add),
|
Chris@10
|
33 * 81 stack variables, 8 constants, and 30 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "t1f.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t1fv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
|
Chris@10
|
40 DVK(KP910592997, +0.910592997310029334643087372129977886038870291);
|
Chris@10
|
41 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
43 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
44 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
45 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
46 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
47 {
|
Chris@10
|
48 INT m;
|
Chris@10
|
49 R *x;
|
Chris@10
|
50 x = ri;
|
Chris@10
|
51 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) {
|
Chris@10
|
52 V Tq, Ty, Th, T1b, T10, Ts, TP, T7, Tu, TA, TC, Tj, Tk, TQ, Tf;
|
Chris@10
|
53 {
|
Chris@10
|
54 V T1, T4, T2, T9, Te;
|
Chris@10
|
55 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
56 T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
57 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
58 {
|
Chris@10
|
59 V T8, Tp, Tx, Tg;
|
Chris@10
|
60 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
61 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
62 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
63 Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
Chris@10
|
64 {
|
Chris@10
|
65 V Tb, Td, Tr, T6, Tt, Tz, TB, Ti;
|
Chris@10
|
66 {
|
Chris@10
|
67 V T5, T3, Ta, Tc;
|
Chris@10
|
68 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
69 Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
70 T5 = BYTWJ(&(W[TWVL * 18]), T4);
|
Chris@10
|
71 T3 = BYTWJ(&(W[TWVL * 8]), T2);
|
Chris@10
|
72 T9 = BYTWJ(&(W[TWVL * 4]), T8);
|
Chris@10
|
73 Tq = BYTWJ(&(W[TWVL * 10]), Tp);
|
Chris@10
|
74 Ty = BYTWJ(&(W[TWVL * 16]), Tx);
|
Chris@10
|
75 Th = BYTWJ(&(W[TWVL * 22]), Tg);
|
Chris@10
|
76 Tb = BYTWJ(&(W[TWVL * 14]), Ta);
|
Chris@10
|
77 Td = BYTWJ(&(W[TWVL * 24]), Tc);
|
Chris@10
|
78 Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
79 T1b = VSUB(T5, T3);
|
Chris@10
|
80 T6 = VADD(T3, T5);
|
Chris@10
|
81 Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
82 }
|
Chris@10
|
83 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
Chris@10
|
84 TB = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
85 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
86 Te = VADD(Tb, Td);
|
Chris@10
|
87 T10 = VSUB(Td, Tb);
|
Chris@10
|
88 Ts = BYTWJ(&(W[TWVL * 20]), Tr);
|
Chris@10
|
89 TP = VFNMS(LDK(KP500000000), T6, T1);
|
Chris@10
|
90 T7 = VADD(T1, T6);
|
Chris@10
|
91 Tu = BYTWJ(&(W[0]), Tt);
|
Chris@10
|
92 TA = BYTWJ(&(W[TWVL * 26]), Tz);
|
Chris@10
|
93 TC = BYTWJ(&(W[TWVL * 6]), TB);
|
Chris@10
|
94 Tj = BYTWJ(&(W[TWVL * 2]), Ti);
|
Chris@10
|
95 Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
96 }
|
Chris@10
|
97 }
|
Chris@10
|
98 TQ = VFNMS(LDK(KP500000000), Te, T9);
|
Chris@10
|
99 Tf = VADD(T9, Te);
|
Chris@10
|
100 }
|
Chris@10
|
101 {
|
Chris@10
|
102 V Tv, T13, TD, T14, Tl;
|
Chris@10
|
103 Tv = VADD(Ts, Tu);
|
Chris@10
|
104 T13 = VSUB(Tu, Ts);
|
Chris@10
|
105 TD = VADD(TA, TC);
|
Chris@10
|
106 T14 = VSUB(TC, TA);
|
Chris@10
|
107 Tl = BYTWJ(&(W[TWVL * 12]), Tk);
|
Chris@10
|
108 {
|
Chris@10
|
109 V TT, Tw, T1d, T15, TU, TE, T11, Tm;
|
Chris@10
|
110 TT = VFNMS(LDK(KP500000000), Tv, Tq);
|
Chris@10
|
111 Tw = VADD(Tq, Tv);
|
Chris@10
|
112 T1d = VADD(T13, T14);
|
Chris@10
|
113 T15 = VSUB(T13, T14);
|
Chris@10
|
114 TU = VFNMS(LDK(KP500000000), TD, Ty);
|
Chris@10
|
115 TE = VADD(Ty, TD);
|
Chris@10
|
116 T11 = VSUB(Tl, Tj);
|
Chris@10
|
117 Tm = VADD(Tj, Tl);
|
Chris@10
|
118 {
|
Chris@10
|
119 V T19, TV, TK, TF, T1c, T12, TR, Tn;
|
Chris@10
|
120 T19 = VSUB(TT, TU);
|
Chris@10
|
121 TV = VADD(TT, TU);
|
Chris@10
|
122 TK = VSUB(Tw, TE);
|
Chris@10
|
123 TF = VADD(Tw, TE);
|
Chris@10
|
124 T1c = VADD(T10, T11);
|
Chris@10
|
125 T12 = VSUB(T10, T11);
|
Chris@10
|
126 TR = VFNMS(LDK(KP500000000), Tm, Th);
|
Chris@10
|
127 Tn = VADD(Th, Tm);
|
Chris@10
|
128 {
|
Chris@10
|
129 V T1g, T1e, T1m, T16, T18, TS, TL, To, T1f, T1u;
|
Chris@10
|
130 T1g = VSUB(T1c, T1d);
|
Chris@10
|
131 T1e = VADD(T1c, T1d);
|
Chris@10
|
132 T1m = VFNMS(LDK(KP618033988), T12, T15);
|
Chris@10
|
133 T16 = VFMA(LDK(KP618033988), T15, T12);
|
Chris@10
|
134 T18 = VSUB(TQ, TR);
|
Chris@10
|
135 TS = VADD(TQ, TR);
|
Chris@10
|
136 TL = VSUB(Tf, Tn);
|
Chris@10
|
137 To = VADD(Tf, Tn);
|
Chris@10
|
138 T1f = VFNMS(LDK(KP250000000), T1e, T1b);
|
Chris@10
|
139 T1u = VMUL(LDK(KP866025403), VADD(T1b, T1e));
|
Chris@10
|
140 {
|
Chris@10
|
141 V T1o, T1a, TY, TO, TM, TG, TI, T1p, T1h, T1t, TX, TW;
|
Chris@10
|
142 T1o = VFNMS(LDK(KP618033988), T18, T19);
|
Chris@10
|
143 T1a = VFMA(LDK(KP618033988), T19, T18);
|
Chris@10
|
144 TW = VADD(TS, TV);
|
Chris@10
|
145 TY = VSUB(TS, TV);
|
Chris@10
|
146 TO = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TK, TL));
|
Chris@10
|
147 TM = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TL, TK));
|
Chris@10
|
148 TG = VADD(To, TF);
|
Chris@10
|
149 TI = VSUB(To, TF);
|
Chris@10
|
150 T1p = VFNMS(LDK(KP559016994), T1g, T1f);
|
Chris@10
|
151 T1h = VFMA(LDK(KP559016994), T1g, T1f);
|
Chris@10
|
152 T1t = VADD(TP, TW);
|
Chris@10
|
153 TX = VFNMS(LDK(KP250000000), TW, TP);
|
Chris@10
|
154 {
|
Chris@10
|
155 V T1q, T1s, T1k, T1i, T1l, TZ, TJ, TN, TH;
|
Chris@10
|
156 ST(&(x[0]), VADD(T7, TG), ms, &(x[0]));
|
Chris@10
|
157 TH = VFNMS(LDK(KP250000000), TG, T7);
|
Chris@10
|
158 T1q = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T1p, T1o));
|
Chris@10
|
159 T1s = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T1p, T1o));
|
Chris@10
|
160 T1k = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T1h, T1a));
|
Chris@10
|
161 T1i = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T1h, T1a));
|
Chris@10
|
162 ST(&(x[WS(rs, 10)]), VFMAI(T1u, T1t), ms, &(x[0]));
|
Chris@10
|
163 ST(&(x[WS(rs, 5)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
164 T1l = VFNMS(LDK(KP559016994), TY, TX);
|
Chris@10
|
165 TZ = VFMA(LDK(KP559016994), TY, TX);
|
Chris@10
|
166 TJ = VFNMS(LDK(KP559016994), TI, TH);
|
Chris@10
|
167 TN = VFMA(LDK(KP559016994), TI, TH);
|
Chris@10
|
168 {
|
Chris@10
|
169 V T1n, T1r, T1j, T17;
|
Chris@10
|
170 T1n = VFMA(LDK(KP823639103), T1m, T1l);
|
Chris@10
|
171 T1r = VFNMS(LDK(KP823639103), T1m, T1l);
|
Chris@10
|
172 T1j = VFNMS(LDK(KP823639103), T16, TZ);
|
Chris@10
|
173 T17 = VFMA(LDK(KP823639103), T16, TZ);
|
Chris@10
|
174 ST(&(x[WS(rs, 12)]), VFMAI(TM, TJ), ms, &(x[0]));
|
Chris@10
|
175 ST(&(x[WS(rs, 3)]), VFNMSI(TM, TJ), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
176 ST(&(x[WS(rs, 9)]), VFMAI(TO, TN), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
177 ST(&(x[WS(rs, 6)]), VFNMSI(TO, TN), ms, &(x[0]));
|
Chris@10
|
178 ST(&(x[WS(rs, 2)]), VFMAI(T1q, T1n), ms, &(x[0]));
|
Chris@10
|
179 ST(&(x[WS(rs, 13)]), VFNMSI(T1q, T1n), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
180 ST(&(x[WS(rs, 7)]), VFMAI(T1s, T1r), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
181 ST(&(x[WS(rs, 8)]), VFNMSI(T1s, T1r), ms, &(x[0]));
|
Chris@10
|
182 ST(&(x[WS(rs, 4)]), VFMAI(T1k, T1j), ms, &(x[0]));
|
Chris@10
|
183 ST(&(x[WS(rs, 11)]), VFNMSI(T1k, T1j), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
184 ST(&(x[WS(rs, 14)]), VFMAI(T1i, T17), ms, &(x[0]));
|
Chris@10
|
185 ST(&(x[WS(rs, 1)]), VFNMSI(T1i, T17), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
186 }
|
Chris@10
|
187 }
|
Chris@10
|
188 }
|
Chris@10
|
189 }
|
Chris@10
|
190 }
|
Chris@10
|
191 }
|
Chris@10
|
192 }
|
Chris@10
|
193 }
|
Chris@10
|
194 }
|
Chris@10
|
195 VLEAVE();
|
Chris@10
|
196 }
|
Chris@10
|
197
|
Chris@10
|
198 static const tw_instr twinstr[] = {
|
Chris@10
|
199 VTW(0, 1),
|
Chris@10
|
200 VTW(0, 2),
|
Chris@10
|
201 VTW(0, 3),
|
Chris@10
|
202 VTW(0, 4),
|
Chris@10
|
203 VTW(0, 5),
|
Chris@10
|
204 VTW(0, 6),
|
Chris@10
|
205 VTW(0, 7),
|
Chris@10
|
206 VTW(0, 8),
|
Chris@10
|
207 VTW(0, 9),
|
Chris@10
|
208 VTW(0, 10),
|
Chris@10
|
209 VTW(0, 11),
|
Chris@10
|
210 VTW(0, 12),
|
Chris@10
|
211 VTW(0, 13),
|
Chris@10
|
212 VTW(0, 14),
|
Chris@10
|
213 {TW_NEXT, VL, 0}
|
Chris@10
|
214 };
|
Chris@10
|
215
|
Chris@10
|
216 static const ct_desc desc = { 15, XSIMD_STRING("t1fv_15"), twinstr, &GENUS, {50, 35, 42, 0}, 0, 0, 0 };
|
Chris@10
|
217
|
Chris@10
|
218 void XSIMD(codelet_t1fv_15) (planner *p) {
|
Chris@10
|
219 X(kdft_dit_register) (p, t1fv_15, &desc);
|
Chris@10
|
220 }
|
Chris@10
|
221 #else /* HAVE_FMA */
|
Chris@10
|
222
|
Chris@10
|
223 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1fv_15 -include t1f.h */
|
Chris@10
|
224
|
Chris@10
|
225 /*
|
Chris@10
|
226 * This function contains 92 FP additions, 53 FP multiplications,
|
Chris@10
|
227 * (or, 78 additions, 39 multiplications, 14 fused multiply/add),
|
Chris@10
|
228 * 52 stack variables, 10 constants, and 30 memory accesses
|
Chris@10
|
229 */
|
Chris@10
|
230 #include "t1f.h"
|
Chris@10
|
231
|
Chris@10
|
232 static void t1fv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
233 {
|
Chris@10
|
234 DVK(KP216506350, +0.216506350946109661690930792688234045867850657);
|
Chris@10
|
235 DVK(KP484122918, +0.484122918275927110647408174972799951354115213);
|
Chris@10
|
236 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
237 DVK(KP509036960, +0.509036960455127183450980863393907648510733164);
|
Chris@10
|
238 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
|
Chris@10
|
239 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
Chris@10
|
240 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
241 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
242 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
243 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
244 {
|
Chris@10
|
245 INT m;
|
Chris@10
|
246 R *x;
|
Chris@10
|
247 x = ri;
|
Chris@10
|
248 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) {
|
Chris@10
|
249 V T1e, T7, TP, T12, T15, Tf, Tn, To, T1b, T1c, T1f, TQ, TR, TS, Tw;
|
Chris@10
|
250 V TE, TF, TT, TU, TV;
|
Chris@10
|
251 {
|
Chris@10
|
252 V T1, T5, T3, T4, T2, T6;
|
Chris@10
|
253 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
254 T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
255 T5 = BYTWJ(&(W[TWVL * 18]), T4);
|
Chris@10
|
256 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
257 T3 = BYTWJ(&(W[TWVL * 8]), T2);
|
Chris@10
|
258 T1e = VSUB(T5, T3);
|
Chris@10
|
259 T6 = VADD(T3, T5);
|
Chris@10
|
260 T7 = VADD(T1, T6);
|
Chris@10
|
261 TP = VFNMS(LDK(KP500000000), T6, T1);
|
Chris@10
|
262 }
|
Chris@10
|
263 {
|
Chris@10
|
264 V T9, Tq, Ty, Th, Te, T13, Tv, T10, TD, T11, Tm, T14;
|
Chris@10
|
265 {
|
Chris@10
|
266 V T8, Tp, Tx, Tg;
|
Chris@10
|
267 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
268 T9 = BYTWJ(&(W[TWVL * 4]), T8);
|
Chris@10
|
269 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
270 Tq = BYTWJ(&(W[TWVL * 10]), Tp);
|
Chris@10
|
271 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
272 Ty = BYTWJ(&(W[TWVL * 16]), Tx);
|
Chris@10
|
273 Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
Chris@10
|
274 Th = BYTWJ(&(W[TWVL * 22]), Tg);
|
Chris@10
|
275 }
|
Chris@10
|
276 {
|
Chris@10
|
277 V Tb, Td, Ta, Tc;
|
Chris@10
|
278 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
279 Tb = BYTWJ(&(W[TWVL * 14]), Ta);
|
Chris@10
|
280 Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
281 Td = BYTWJ(&(W[TWVL * 24]), Tc);
|
Chris@10
|
282 Te = VADD(Tb, Td);
|
Chris@10
|
283 T13 = VSUB(Td, Tb);
|
Chris@10
|
284 }
|
Chris@10
|
285 {
|
Chris@10
|
286 V Ts, Tu, Tr, Tt;
|
Chris@10
|
287 Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
288 Ts = BYTWJ(&(W[TWVL * 20]), Tr);
|
Chris@10
|
289 Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
290 Tu = BYTWJ(&(W[0]), Tt);
|
Chris@10
|
291 Tv = VADD(Ts, Tu);
|
Chris@10
|
292 T10 = VSUB(Tu, Ts);
|
Chris@10
|
293 }
|
Chris@10
|
294 {
|
Chris@10
|
295 V TA, TC, Tz, TB;
|
Chris@10
|
296 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
Chris@10
|
297 TA = BYTWJ(&(W[TWVL * 26]), Tz);
|
Chris@10
|
298 TB = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
299 TC = BYTWJ(&(W[TWVL * 6]), TB);
|
Chris@10
|
300 TD = VADD(TA, TC);
|
Chris@10
|
301 T11 = VSUB(TC, TA);
|
Chris@10
|
302 }
|
Chris@10
|
303 {
|
Chris@10
|
304 V Tj, Tl, Ti, Tk;
|
Chris@10
|
305 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
306 Tj = BYTWJ(&(W[TWVL * 2]), Ti);
|
Chris@10
|
307 Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
308 Tl = BYTWJ(&(W[TWVL * 12]), Tk);
|
Chris@10
|
309 Tm = VADD(Tj, Tl);
|
Chris@10
|
310 T14 = VSUB(Tl, Tj);
|
Chris@10
|
311 }
|
Chris@10
|
312 T12 = VSUB(T10, T11);
|
Chris@10
|
313 T15 = VSUB(T13, T14);
|
Chris@10
|
314 Tf = VADD(T9, Te);
|
Chris@10
|
315 Tn = VADD(Th, Tm);
|
Chris@10
|
316 To = VADD(Tf, Tn);
|
Chris@10
|
317 T1b = VADD(T13, T14);
|
Chris@10
|
318 T1c = VADD(T10, T11);
|
Chris@10
|
319 T1f = VADD(T1b, T1c);
|
Chris@10
|
320 TQ = VFNMS(LDK(KP500000000), Te, T9);
|
Chris@10
|
321 TR = VFNMS(LDK(KP500000000), Tm, Th);
|
Chris@10
|
322 TS = VADD(TQ, TR);
|
Chris@10
|
323 Tw = VADD(Tq, Tv);
|
Chris@10
|
324 TE = VADD(Ty, TD);
|
Chris@10
|
325 TF = VADD(Tw, TE);
|
Chris@10
|
326 TT = VFNMS(LDK(KP500000000), Tv, Tq);
|
Chris@10
|
327 TU = VFNMS(LDK(KP500000000), TD, Ty);
|
Chris@10
|
328 TV = VADD(TT, TU);
|
Chris@10
|
329 }
|
Chris@10
|
330 {
|
Chris@10
|
331 V TI, TG, TH, TM, TO, TK, TL, TN, TJ;
|
Chris@10
|
332 TI = VMUL(LDK(KP559016994), VSUB(To, TF));
|
Chris@10
|
333 TG = VADD(To, TF);
|
Chris@10
|
334 TH = VFNMS(LDK(KP250000000), TG, T7);
|
Chris@10
|
335 TK = VSUB(Tw, TE);
|
Chris@10
|
336 TL = VSUB(Tf, Tn);
|
Chris@10
|
337 TM = VBYI(VFNMS(LDK(KP587785252), TL, VMUL(LDK(KP951056516), TK)));
|
Chris@10
|
338 TO = VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TK)));
|
Chris@10
|
339 ST(&(x[0]), VADD(T7, TG), ms, &(x[0]));
|
Chris@10
|
340 TN = VADD(TI, TH);
|
Chris@10
|
341 ST(&(x[WS(rs, 6)]), VSUB(TN, TO), ms, &(x[0]));
|
Chris@10
|
342 ST(&(x[WS(rs, 9)]), VADD(TO, TN), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
343 TJ = VSUB(TH, TI);
|
Chris@10
|
344 ST(&(x[WS(rs, 3)]), VSUB(TJ, TM), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
345 ST(&(x[WS(rs, 12)]), VADD(TM, TJ), ms, &(x[0]));
|
Chris@10
|
346 }
|
Chris@10
|
347 {
|
Chris@10
|
348 V T16, T1m, T1u, T1h, T1o, T1a, T1p, TZ, T1t, T1l, T1d, T1g;
|
Chris@10
|
349 T16 = VFNMS(LDK(KP509036960), T15, VMUL(LDK(KP823639103), T12));
|
Chris@10
|
350 T1m = VFMA(LDK(KP823639103), T15, VMUL(LDK(KP509036960), T12));
|
Chris@10
|
351 T1u = VBYI(VMUL(LDK(KP866025403), VADD(T1e, T1f)));
|
Chris@10
|
352 T1d = VMUL(LDK(KP484122918), VSUB(T1b, T1c));
|
Chris@10
|
353 T1g = VFNMS(LDK(KP216506350), T1f, VMUL(LDK(KP866025403), T1e));
|
Chris@10
|
354 T1h = VSUB(T1d, T1g);
|
Chris@10
|
355 T1o = VADD(T1d, T1g);
|
Chris@10
|
356 {
|
Chris@10
|
357 V T18, T19, TY, TW, TX;
|
Chris@10
|
358 T18 = VSUB(TT, TU);
|
Chris@10
|
359 T19 = VSUB(TQ, TR);
|
Chris@10
|
360 T1a = VFNMS(LDK(KP587785252), T19, VMUL(LDK(KP951056516), T18));
|
Chris@10
|
361 T1p = VFMA(LDK(KP951056516), T19, VMUL(LDK(KP587785252), T18));
|
Chris@10
|
362 TY = VMUL(LDK(KP559016994), VSUB(TS, TV));
|
Chris@10
|
363 TW = VADD(TS, TV);
|
Chris@10
|
364 TX = VFNMS(LDK(KP250000000), TW, TP);
|
Chris@10
|
365 TZ = VSUB(TX, TY);
|
Chris@10
|
366 T1t = VADD(TP, TW);
|
Chris@10
|
367 T1l = VADD(TY, TX);
|
Chris@10
|
368 }
|
Chris@10
|
369 {
|
Chris@10
|
370 V T17, T1i, T1r, T1s;
|
Chris@10
|
371 ST(&(x[WS(rs, 5)]), VSUB(T1t, T1u), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
372 ST(&(x[WS(rs, 10)]), VADD(T1t, T1u), ms, &(x[0]));
|
Chris@10
|
373 T17 = VSUB(TZ, T16);
|
Chris@10
|
374 T1i = VBYI(VSUB(T1a, T1h));
|
Chris@10
|
375 ST(&(x[WS(rs, 8)]), VSUB(T17, T1i), ms, &(x[0]));
|
Chris@10
|
376 ST(&(x[WS(rs, 7)]), VADD(T17, T1i), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
377 T1r = VSUB(T1l, T1m);
|
Chris@10
|
378 T1s = VBYI(VADD(T1p, T1o));
|
Chris@10
|
379 ST(&(x[WS(rs, 11)]), VSUB(T1r, T1s), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
380 ST(&(x[WS(rs, 4)]), VADD(T1r, T1s), ms, &(x[0]));
|
Chris@10
|
381 {
|
Chris@10
|
382 V T1n, T1q, T1j, T1k;
|
Chris@10
|
383 T1n = VADD(T1l, T1m);
|
Chris@10
|
384 T1q = VBYI(VSUB(T1o, T1p));
|
Chris@10
|
385 ST(&(x[WS(rs, 14)]), VSUB(T1n, T1q), ms, &(x[0]));
|
Chris@10
|
386 ST(&(x[WS(rs, 1)]), VADD(T1n, T1q), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
387 T1j = VADD(TZ, T16);
|
Chris@10
|
388 T1k = VBYI(VADD(T1a, T1h));
|
Chris@10
|
389 ST(&(x[WS(rs, 13)]), VSUB(T1j, T1k), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
390 ST(&(x[WS(rs, 2)]), VADD(T1j, T1k), ms, &(x[0]));
|
Chris@10
|
391 }
|
Chris@10
|
392 }
|
Chris@10
|
393 }
|
Chris@10
|
394 }
|
Chris@10
|
395 }
|
Chris@10
|
396 VLEAVE();
|
Chris@10
|
397 }
|
Chris@10
|
398
|
Chris@10
|
399 static const tw_instr twinstr[] = {
|
Chris@10
|
400 VTW(0, 1),
|
Chris@10
|
401 VTW(0, 2),
|
Chris@10
|
402 VTW(0, 3),
|
Chris@10
|
403 VTW(0, 4),
|
Chris@10
|
404 VTW(0, 5),
|
Chris@10
|
405 VTW(0, 6),
|
Chris@10
|
406 VTW(0, 7),
|
Chris@10
|
407 VTW(0, 8),
|
Chris@10
|
408 VTW(0, 9),
|
Chris@10
|
409 VTW(0, 10),
|
Chris@10
|
410 VTW(0, 11),
|
Chris@10
|
411 VTW(0, 12),
|
Chris@10
|
412 VTW(0, 13),
|
Chris@10
|
413 VTW(0, 14),
|
Chris@10
|
414 {TW_NEXT, VL, 0}
|
Chris@10
|
415 };
|
Chris@10
|
416
|
Chris@10
|
417 static const ct_desc desc = { 15, XSIMD_STRING("t1fv_15"), twinstr, &GENUS, {78, 39, 14, 0}, 0, 0, 0 };
|
Chris@10
|
418
|
Chris@10
|
419 void XSIMD(codelet_t1fv_15) (planner *p) {
|
Chris@10
|
420 X(kdft_dit_register) (p, t1fv_15, &desc);
|
Chris@10
|
421 }
|
Chris@10
|
422 #endif /* HAVE_FMA */
|