Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:38:03 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include t1f.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 59 FP additions, 42 FP multiplications,
|
Chris@10
|
32 * (or, 41 additions, 24 multiplications, 18 fused multiply/add),
|
Chris@10
|
33 * 41 stack variables, 2 constants, and 24 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "t1f.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
41 {
|
Chris@10
|
42 INT m;
|
Chris@10
|
43 R *x;
|
Chris@10
|
44 x = ri;
|
Chris@10
|
45 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
|
Chris@10
|
46 V Tq, Ti, T7, TQ, Tu, TA, TU, Tk, TR, Tf, TE, TM;
|
Chris@10
|
47 {
|
Chris@10
|
48 V T9, TC, Tj, TD, Te;
|
Chris@10
|
49 {
|
Chris@10
|
50 V T1, T4, T2, Tm, Tx, To;
|
Chris@10
|
51 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
52 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
53 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
54 Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
55 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
56 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
57 {
|
Chris@10
|
58 V T5, T3, Tn, Ty, Tp, Td, Tb, T8, Tc, Ta;
|
Chris@10
|
59 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
60 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
61 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
62 T5 = BYTWJ(&(W[TWVL * 14]), T4);
|
Chris@10
|
63 T3 = BYTWJ(&(W[TWVL * 6]), T2);
|
Chris@10
|
64 Tn = BYTWJ(&(W[0]), Tm);
|
Chris@10
|
65 Ty = BYTWJ(&(W[TWVL * 16]), Tx);
|
Chris@10
|
66 Tp = BYTWJ(&(W[TWVL * 8]), To);
|
Chris@10
|
67 T9 = BYTWJ(&(W[TWVL * 10]), T8);
|
Chris@10
|
68 Td = BYTWJ(&(W[TWVL * 2]), Tc);
|
Chris@10
|
69 Tb = BYTWJ(&(W[TWVL * 18]), Ta);
|
Chris@10
|
70 {
|
Chris@10
|
71 V Th, T6, Tt, Tz;
|
Chris@10
|
72 Th = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
73 TC = VSUB(T5, T3);
|
Chris@10
|
74 T6 = VADD(T3, T5);
|
Chris@10
|
75 Tt = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
76 Tz = VADD(Tn, Tp);
|
Chris@10
|
77 Tq = VSUB(Tn, Tp);
|
Chris@10
|
78 Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
79 TD = VSUB(Td, Tb);
|
Chris@10
|
80 Te = VADD(Tb, Td);
|
Chris@10
|
81 Ti = BYTWJ(&(W[TWVL * 20]), Th);
|
Chris@10
|
82 T7 = VFNMS(LDK(KP500000000), T6, T1);
|
Chris@10
|
83 TQ = VADD(T1, T6);
|
Chris@10
|
84 Tu = BYTWJ(&(W[TWVL * 4]), Tt);
|
Chris@10
|
85 TA = VFNMS(LDK(KP500000000), Tz, Ty);
|
Chris@10
|
86 TU = VADD(Ty, Tz);
|
Chris@10
|
87 }
|
Chris@10
|
88 }
|
Chris@10
|
89 }
|
Chris@10
|
90 Tk = BYTWJ(&(W[TWVL * 12]), Tj);
|
Chris@10
|
91 TR = VADD(T9, Te);
|
Chris@10
|
92 Tf = VFNMS(LDK(KP500000000), Te, T9);
|
Chris@10
|
93 TE = VSUB(TC, TD);
|
Chris@10
|
94 TM = VADD(TC, TD);
|
Chris@10
|
95 }
|
Chris@10
|
96 {
|
Chris@10
|
97 V Tv, Tl, TI, Tg, TW, TS;
|
Chris@10
|
98 Tv = VADD(Tk, Ti);
|
Chris@10
|
99 Tl = VSUB(Ti, Tk);
|
Chris@10
|
100 TI = VADD(T7, Tf);
|
Chris@10
|
101 Tg = VSUB(T7, Tf);
|
Chris@10
|
102 TW = VADD(TQ, TR);
|
Chris@10
|
103 TS = VSUB(TQ, TR);
|
Chris@10
|
104 {
|
Chris@10
|
105 V TT, Tw, TL, Tr;
|
Chris@10
|
106 TT = VADD(Tu, Tv);
|
Chris@10
|
107 Tw = VFNMS(LDK(KP500000000), Tv, Tu);
|
Chris@10
|
108 TL = VSUB(Tl, Tq);
|
Chris@10
|
109 Tr = VADD(Tl, Tq);
|
Chris@10
|
110 {
|
Chris@10
|
111 V TP, TN, TG, Ts, TO, TK, TH, TF;
|
Chris@10
|
112 {
|
Chris@10
|
113 V TX, TV, TJ, TB;
|
Chris@10
|
114 TX = VADD(TT, TU);
|
Chris@10
|
115 TV = VSUB(TT, TU);
|
Chris@10
|
116 TJ = VADD(Tw, TA);
|
Chris@10
|
117 TB = VSUB(Tw, TA);
|
Chris@10
|
118 TP = VMUL(LDK(KP866025403), VADD(TM, TL));
|
Chris@10
|
119 TN = VMUL(LDK(KP866025403), VSUB(TL, TM));
|
Chris@10
|
120 TG = VFNMS(LDK(KP866025403), Tr, Tg);
|
Chris@10
|
121 Ts = VFMA(LDK(KP866025403), Tr, Tg);
|
Chris@10
|
122 ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0]));
|
Chris@10
|
123 ST(&(x[0]), VADD(TW, TX), ms, &(x[0]));
|
Chris@10
|
124 ST(&(x[WS(rs, 3)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
125 ST(&(x[WS(rs, 9)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
126 TO = VADD(TI, TJ);
|
Chris@10
|
127 TK = VSUB(TI, TJ);
|
Chris@10
|
128 TH = VFMA(LDK(KP866025403), TE, TB);
|
Chris@10
|
129 TF = VFNMS(LDK(KP866025403), TE, TB);
|
Chris@10
|
130 }
|
Chris@10
|
131 ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0]));
|
Chris@10
|
132 ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0]));
|
Chris@10
|
133 ST(&(x[WS(rs, 10)]), VFNMSI(TN, TK), ms, &(x[0]));
|
Chris@10
|
134 ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0]));
|
Chris@10
|
135 ST(&(x[WS(rs, 5)]), VFNMSI(TH, TG), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
136 ST(&(x[WS(rs, 7)]), VFMAI(TH, TG), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
137 ST(&(x[WS(rs, 11)]), VFMAI(TF, Ts), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
138 ST(&(x[WS(rs, 1)]), VFNMSI(TF, Ts), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
139 }
|
Chris@10
|
140 }
|
Chris@10
|
141 }
|
Chris@10
|
142 }
|
Chris@10
|
143 }
|
Chris@10
|
144 VLEAVE();
|
Chris@10
|
145 }
|
Chris@10
|
146
|
Chris@10
|
147 static const tw_instr twinstr[] = {
|
Chris@10
|
148 VTW(0, 1),
|
Chris@10
|
149 VTW(0, 2),
|
Chris@10
|
150 VTW(0, 3),
|
Chris@10
|
151 VTW(0, 4),
|
Chris@10
|
152 VTW(0, 5),
|
Chris@10
|
153 VTW(0, 6),
|
Chris@10
|
154 VTW(0, 7),
|
Chris@10
|
155 VTW(0, 8),
|
Chris@10
|
156 VTW(0, 9),
|
Chris@10
|
157 VTW(0, 10),
|
Chris@10
|
158 VTW(0, 11),
|
Chris@10
|
159 {TW_NEXT, VL, 0}
|
Chris@10
|
160 };
|
Chris@10
|
161
|
Chris@10
|
162 static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, {41, 24, 18, 0}, 0, 0, 0 };
|
Chris@10
|
163
|
Chris@10
|
164 void XSIMD(codelet_t1fv_12) (planner *p) {
|
Chris@10
|
165 X(kdft_dit_register) (p, t1fv_12, &desc);
|
Chris@10
|
166 }
|
Chris@10
|
167 #else /* HAVE_FMA */
|
Chris@10
|
168
|
Chris@10
|
169 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include t1f.h */
|
Chris@10
|
170
|
Chris@10
|
171 /*
|
Chris@10
|
172 * This function contains 59 FP additions, 30 FP multiplications,
|
Chris@10
|
173 * (or, 55 additions, 26 multiplications, 4 fused multiply/add),
|
Chris@10
|
174 * 28 stack variables, 2 constants, and 24 memory accesses
|
Chris@10
|
175 */
|
Chris@10
|
176 #include "t1f.h"
|
Chris@10
|
177
|
Chris@10
|
178 static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
179 {
|
Chris@10
|
180 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
181 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
182 {
|
Chris@10
|
183 INT m;
|
Chris@10
|
184 R *x;
|
Chris@10
|
185 x = ri;
|
Chris@10
|
186 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
|
Chris@10
|
187 V T1, TH, T6, TA, Tq, TE, Tv, TL, T9, TI, Te, TB, Ti, TD, Tn;
|
Chris@10
|
188 V TK;
|
Chris@10
|
189 {
|
Chris@10
|
190 V T5, T3, T4, T2;
|
Chris@10
|
191 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
192 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
193 T5 = BYTWJ(&(W[TWVL * 14]), T4);
|
Chris@10
|
194 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
195 T3 = BYTWJ(&(W[TWVL * 6]), T2);
|
Chris@10
|
196 TH = VSUB(T5, T3);
|
Chris@10
|
197 T6 = VADD(T3, T5);
|
Chris@10
|
198 TA = VFNMS(LDK(KP500000000), T6, T1);
|
Chris@10
|
199 }
|
Chris@10
|
200 {
|
Chris@10
|
201 V Tu, Ts, Tp, Tt, Tr;
|
Chris@10
|
202 Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
203 Tq = BYTWJ(&(W[TWVL * 16]), Tp);
|
Chris@10
|
204 Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
205 Tu = BYTWJ(&(W[TWVL * 8]), Tt);
|
Chris@10
|
206 Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
207 Ts = BYTWJ(&(W[0]), Tr);
|
Chris@10
|
208 TE = VSUB(Tu, Ts);
|
Chris@10
|
209 Tv = VADD(Ts, Tu);
|
Chris@10
|
210 TL = VFNMS(LDK(KP500000000), Tv, Tq);
|
Chris@10
|
211 }
|
Chris@10
|
212 {
|
Chris@10
|
213 V Td, Tb, T8, Tc, Ta;
|
Chris@10
|
214 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
215 T9 = BYTWJ(&(W[TWVL * 10]), T8);
|
Chris@10
|
216 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
217 Td = BYTWJ(&(W[TWVL * 2]), Tc);
|
Chris@10
|
218 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
219 Tb = BYTWJ(&(W[TWVL * 18]), Ta);
|
Chris@10
|
220 TI = VSUB(Td, Tb);
|
Chris@10
|
221 Te = VADD(Tb, Td);
|
Chris@10
|
222 TB = VFNMS(LDK(KP500000000), Te, T9);
|
Chris@10
|
223 }
|
Chris@10
|
224 {
|
Chris@10
|
225 V Tm, Tk, Th, Tl, Tj;
|
Chris@10
|
226 Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
227 Ti = BYTWJ(&(W[TWVL * 4]), Th);
|
Chris@10
|
228 Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
229 Tm = BYTWJ(&(W[TWVL * 20]), Tl);
|
Chris@10
|
230 Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
231 Tk = BYTWJ(&(W[TWVL * 12]), Tj);
|
Chris@10
|
232 TD = VSUB(Tm, Tk);
|
Chris@10
|
233 Tn = VADD(Tk, Tm);
|
Chris@10
|
234 TK = VFNMS(LDK(KP500000000), Tn, Ti);
|
Chris@10
|
235 }
|
Chris@10
|
236 {
|
Chris@10
|
237 V Tg, Ty, Tx, Tz;
|
Chris@10
|
238 {
|
Chris@10
|
239 V T7, Tf, To, Tw;
|
Chris@10
|
240 T7 = VADD(T1, T6);
|
Chris@10
|
241 Tf = VADD(T9, Te);
|
Chris@10
|
242 Tg = VSUB(T7, Tf);
|
Chris@10
|
243 Ty = VADD(T7, Tf);
|
Chris@10
|
244 To = VADD(Ti, Tn);
|
Chris@10
|
245 Tw = VADD(Tq, Tv);
|
Chris@10
|
246 Tx = VBYI(VSUB(To, Tw));
|
Chris@10
|
247 Tz = VADD(To, Tw);
|
Chris@10
|
248 }
|
Chris@10
|
249 ST(&(x[WS(rs, 9)]), VSUB(Tg, Tx), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
250 ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0]));
|
Chris@10
|
251 ST(&(x[WS(rs, 3)]), VADD(Tg, Tx), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
252 ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0]));
|
Chris@10
|
253 }
|
Chris@10
|
254 {
|
Chris@10
|
255 V TS, TW, TV, TX;
|
Chris@10
|
256 {
|
Chris@10
|
257 V TQ, TR, TT, TU;
|
Chris@10
|
258 TQ = VADD(TA, TB);
|
Chris@10
|
259 TR = VADD(TK, TL);
|
Chris@10
|
260 TS = VSUB(TQ, TR);
|
Chris@10
|
261 TW = VADD(TQ, TR);
|
Chris@10
|
262 TT = VADD(TD, TE);
|
Chris@10
|
263 TU = VADD(TH, TI);
|
Chris@10
|
264 TV = VBYI(VMUL(LDK(KP866025403), VSUB(TT, TU)));
|
Chris@10
|
265 TX = VBYI(VMUL(LDK(KP866025403), VADD(TU, TT)));
|
Chris@10
|
266 }
|
Chris@10
|
267 ST(&(x[WS(rs, 10)]), VSUB(TS, TV), ms, &(x[0]));
|
Chris@10
|
268 ST(&(x[WS(rs, 4)]), VADD(TW, TX), ms, &(x[0]));
|
Chris@10
|
269 ST(&(x[WS(rs, 2)]), VADD(TS, TV), ms, &(x[0]));
|
Chris@10
|
270 ST(&(x[WS(rs, 8)]), VSUB(TW, TX), ms, &(x[0]));
|
Chris@10
|
271 }
|
Chris@10
|
272 {
|
Chris@10
|
273 V TG, TP, TN, TO;
|
Chris@10
|
274 {
|
Chris@10
|
275 V TC, TF, TJ, TM;
|
Chris@10
|
276 TC = VSUB(TA, TB);
|
Chris@10
|
277 TF = VMUL(LDK(KP866025403), VSUB(TD, TE));
|
Chris@10
|
278 TG = VSUB(TC, TF);
|
Chris@10
|
279 TP = VADD(TC, TF);
|
Chris@10
|
280 TJ = VMUL(LDK(KP866025403), VSUB(TH, TI));
|
Chris@10
|
281 TM = VSUB(TK, TL);
|
Chris@10
|
282 TN = VBYI(VADD(TJ, TM));
|
Chris@10
|
283 TO = VBYI(VSUB(TJ, TM));
|
Chris@10
|
284 }
|
Chris@10
|
285 ST(&(x[WS(rs, 5)]), VSUB(TG, TN), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
286 ST(&(x[WS(rs, 11)]), VSUB(TP, TO), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
287 ST(&(x[WS(rs, 7)]), VADD(TN, TG), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
288 ST(&(x[WS(rs, 1)]), VADD(TO, TP), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
289 }
|
Chris@10
|
290 }
|
Chris@10
|
291 }
|
Chris@10
|
292 VLEAVE();
|
Chris@10
|
293 }
|
Chris@10
|
294
|
Chris@10
|
295 static const tw_instr twinstr[] = {
|
Chris@10
|
296 VTW(0, 1),
|
Chris@10
|
297 VTW(0, 2),
|
Chris@10
|
298 VTW(0, 3),
|
Chris@10
|
299 VTW(0, 4),
|
Chris@10
|
300 VTW(0, 5),
|
Chris@10
|
301 VTW(0, 6),
|
Chris@10
|
302 VTW(0, 7),
|
Chris@10
|
303 VTW(0, 8),
|
Chris@10
|
304 VTW(0, 9),
|
Chris@10
|
305 VTW(0, 10),
|
Chris@10
|
306 VTW(0, 11),
|
Chris@10
|
307 {TW_NEXT, VL, 0}
|
Chris@10
|
308 };
|
Chris@10
|
309
|
Chris@10
|
310 static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, {55, 26, 4, 0}, 0, 0, 0 };
|
Chris@10
|
311
|
Chris@10
|
312 void XSIMD(codelet_t1fv_12) (planner *p) {
|
Chris@10
|
313 X(kdft_dit_register) (p, t1fv_12, &desc);
|
Chris@10
|
314 }
|
Chris@10
|
315 #endif /* HAVE_FMA */
|