Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:38:03 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t1fv_10 -include t1f.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 51 FP additions, 40 FP multiplications,
|
Chris@10
|
32 * (or, 33 additions, 22 multiplications, 18 fused multiply/add),
|
Chris@10
|
33 * 43 stack variables, 4 constants, and 20 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "t1f.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t1fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
43 {
|
Chris@10
|
44 INT m;
|
Chris@10
|
45 R *x;
|
Chris@10
|
46 x = ri;
|
Chris@10
|
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) {
|
Chris@10
|
48 V Td, TA, T4, Ta, Tk, TE, Tp, TF, TB, T9, T1, T2, Tb;
|
Chris@10
|
49 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
50 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
51 {
|
Chris@10
|
52 V Tg, Tn, Ti, Tl;
|
Chris@10
|
53 Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
54 Tn = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
55 Ti = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
56 Tl = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
57 {
|
Chris@10
|
58 V T6, T8, T5, Tc;
|
Chris@10
|
59 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
60 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
61 {
|
Chris@10
|
62 V T3, Th, To, Tj, Tm, T7;
|
Chris@10
|
63 T7 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
64 T3 = BYTWJ(&(W[TWVL * 8]), T2);
|
Chris@10
|
65 Th = BYTWJ(&(W[TWVL * 6]), Tg);
|
Chris@10
|
66 To = BYTWJ(&(W[0]), Tn);
|
Chris@10
|
67 Tj = BYTWJ(&(W[TWVL * 16]), Ti);
|
Chris@10
|
68 Tm = BYTWJ(&(W[TWVL * 10]), Tl);
|
Chris@10
|
69 T6 = BYTWJ(&(W[TWVL * 2]), T5);
|
Chris@10
|
70 Td = BYTWJ(&(W[TWVL * 4]), Tc);
|
Chris@10
|
71 T8 = BYTWJ(&(W[TWVL * 12]), T7);
|
Chris@10
|
72 TA = VADD(T1, T3);
|
Chris@10
|
73 T4 = VSUB(T1, T3);
|
Chris@10
|
74 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
75 Tk = VSUB(Th, Tj);
|
Chris@10
|
76 TE = VADD(Th, Tj);
|
Chris@10
|
77 Tp = VSUB(Tm, To);
|
Chris@10
|
78 TF = VADD(Tm, To);
|
Chris@10
|
79 }
|
Chris@10
|
80 TB = VADD(T6, T8);
|
Chris@10
|
81 T9 = VSUB(T6, T8);
|
Chris@10
|
82 }
|
Chris@10
|
83 }
|
Chris@10
|
84 Tb = BYTWJ(&(W[TWVL * 14]), Ta);
|
Chris@10
|
85 {
|
Chris@10
|
86 V TL, TG, Tw, Tq, TC, Te;
|
Chris@10
|
87 TL = VSUB(TE, TF);
|
Chris@10
|
88 TG = VADD(TE, TF);
|
Chris@10
|
89 Tw = VSUB(Tk, Tp);
|
Chris@10
|
90 Tq = VADD(Tk, Tp);
|
Chris@10
|
91 TC = VADD(Tb, Td);
|
Chris@10
|
92 Te = VSUB(Tb, Td);
|
Chris@10
|
93 {
|
Chris@10
|
94 V TM, TD, Tv, Tf;
|
Chris@10
|
95 TM = VSUB(TB, TC);
|
Chris@10
|
96 TD = VADD(TB, TC);
|
Chris@10
|
97 Tv = VSUB(T9, Te);
|
Chris@10
|
98 Tf = VADD(T9, Te);
|
Chris@10
|
99 {
|
Chris@10
|
100 V TP, TN, TH, TJ, Tz, Tx, Tr, Tt, TI, Ts;
|
Chris@10
|
101 TP = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TL, TM));
|
Chris@10
|
102 TN = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TM, TL));
|
Chris@10
|
103 TH = VADD(TD, TG);
|
Chris@10
|
104 TJ = VSUB(TD, TG);
|
Chris@10
|
105 Tz = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tv, Tw));
|
Chris@10
|
106 Tx = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tv));
|
Chris@10
|
107 Tr = VADD(Tf, Tq);
|
Chris@10
|
108 Tt = VSUB(Tf, Tq);
|
Chris@10
|
109 ST(&(x[0]), VADD(TA, TH), ms, &(x[0]));
|
Chris@10
|
110 TI = VFNMS(LDK(KP250000000), TH, TA);
|
Chris@10
|
111 ST(&(x[WS(rs, 5)]), VADD(T4, Tr), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
112 Ts = VFNMS(LDK(KP250000000), Tr, T4);
|
Chris@10
|
113 {
|
Chris@10
|
114 V TK, TO, Tu, Ty;
|
Chris@10
|
115 TK = VFNMS(LDK(KP559016994), TJ, TI);
|
Chris@10
|
116 TO = VFMA(LDK(KP559016994), TJ, TI);
|
Chris@10
|
117 Tu = VFMA(LDK(KP559016994), Tt, Ts);
|
Chris@10
|
118 Ty = VFNMS(LDK(KP559016994), Tt, Ts);
|
Chris@10
|
119 ST(&(x[WS(rs, 8)]), VFNMSI(TN, TK), ms, &(x[0]));
|
Chris@10
|
120 ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0]));
|
Chris@10
|
121 ST(&(x[WS(rs, 6)]), VFNMSI(TP, TO), ms, &(x[0]));
|
Chris@10
|
122 ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0]));
|
Chris@10
|
123 ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tu), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
124 ST(&(x[WS(rs, 1)]), VFNMSI(Tx, Tu), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
125 ST(&(x[WS(rs, 7)]), VFMAI(Tz, Ty), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
126 ST(&(x[WS(rs, 3)]), VFNMSI(Tz, Ty), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
127 }
|
Chris@10
|
128 }
|
Chris@10
|
129 }
|
Chris@10
|
130 }
|
Chris@10
|
131 }
|
Chris@10
|
132 }
|
Chris@10
|
133 VLEAVE();
|
Chris@10
|
134 }
|
Chris@10
|
135
|
Chris@10
|
136 static const tw_instr twinstr[] = {
|
Chris@10
|
137 VTW(0, 1),
|
Chris@10
|
138 VTW(0, 2),
|
Chris@10
|
139 VTW(0, 3),
|
Chris@10
|
140 VTW(0, 4),
|
Chris@10
|
141 VTW(0, 5),
|
Chris@10
|
142 VTW(0, 6),
|
Chris@10
|
143 VTW(0, 7),
|
Chris@10
|
144 VTW(0, 8),
|
Chris@10
|
145 VTW(0, 9),
|
Chris@10
|
146 {TW_NEXT, VL, 0}
|
Chris@10
|
147 };
|
Chris@10
|
148
|
Chris@10
|
149 static const ct_desc desc = { 10, XSIMD_STRING("t1fv_10"), twinstr, &GENUS, {33, 22, 18, 0}, 0, 0, 0 };
|
Chris@10
|
150
|
Chris@10
|
151 void XSIMD(codelet_t1fv_10) (planner *p) {
|
Chris@10
|
152 X(kdft_dit_register) (p, t1fv_10, &desc);
|
Chris@10
|
153 }
|
Chris@10
|
154 #else /* HAVE_FMA */
|
Chris@10
|
155
|
Chris@10
|
156 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t1fv_10 -include t1f.h */
|
Chris@10
|
157
|
Chris@10
|
158 /*
|
Chris@10
|
159 * This function contains 51 FP additions, 30 FP multiplications,
|
Chris@10
|
160 * (or, 45 additions, 24 multiplications, 6 fused multiply/add),
|
Chris@10
|
161 * 32 stack variables, 4 constants, and 20 memory accesses
|
Chris@10
|
162 */
|
Chris@10
|
163 #include "t1f.h"
|
Chris@10
|
164
|
Chris@10
|
165 static void t1fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
166 {
|
Chris@10
|
167 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
Chris@10
|
168 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
169 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
170 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
171 {
|
Chris@10
|
172 INT m;
|
Chris@10
|
173 R *x;
|
Chris@10
|
174 x = ri;
|
Chris@10
|
175 for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) {
|
Chris@10
|
176 V Tr, TH, Tg, Tl, Tm, TA, TB, TJ, T5, Ta, Tb, TD, TE, TI, To;
|
Chris@10
|
177 V Tq, Tp;
|
Chris@10
|
178 To = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
179 Tp = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
180 Tq = BYTWJ(&(W[TWVL * 8]), Tp);
|
Chris@10
|
181 Tr = VSUB(To, Tq);
|
Chris@10
|
182 TH = VADD(To, Tq);
|
Chris@10
|
183 {
|
Chris@10
|
184 V Td, Tk, Tf, Ti;
|
Chris@10
|
185 {
|
Chris@10
|
186 V Tc, Tj, Te, Th;
|
Chris@10
|
187 Tc = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
188 Td = BYTWJ(&(W[TWVL * 6]), Tc);
|
Chris@10
|
189 Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
190 Tk = BYTWJ(&(W[0]), Tj);
|
Chris@10
|
191 Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
192 Tf = BYTWJ(&(W[TWVL * 16]), Te);
|
Chris@10
|
193 Th = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
194 Ti = BYTWJ(&(W[TWVL * 10]), Th);
|
Chris@10
|
195 }
|
Chris@10
|
196 Tg = VSUB(Td, Tf);
|
Chris@10
|
197 Tl = VSUB(Ti, Tk);
|
Chris@10
|
198 Tm = VADD(Tg, Tl);
|
Chris@10
|
199 TA = VADD(Td, Tf);
|
Chris@10
|
200 TB = VADD(Ti, Tk);
|
Chris@10
|
201 TJ = VADD(TA, TB);
|
Chris@10
|
202 }
|
Chris@10
|
203 {
|
Chris@10
|
204 V T2, T9, T4, T7;
|
Chris@10
|
205 {
|
Chris@10
|
206 V T1, T8, T3, T6;
|
Chris@10
|
207 T1 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
208 T2 = BYTWJ(&(W[TWVL * 2]), T1);
|
Chris@10
|
209 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
210 T9 = BYTWJ(&(W[TWVL * 4]), T8);
|
Chris@10
|
211 T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
212 T4 = BYTWJ(&(W[TWVL * 12]), T3);
|
Chris@10
|
213 T6 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
214 T7 = BYTWJ(&(W[TWVL * 14]), T6);
|
Chris@10
|
215 }
|
Chris@10
|
216 T5 = VSUB(T2, T4);
|
Chris@10
|
217 Ta = VSUB(T7, T9);
|
Chris@10
|
218 Tb = VADD(T5, Ta);
|
Chris@10
|
219 TD = VADD(T2, T4);
|
Chris@10
|
220 TE = VADD(T7, T9);
|
Chris@10
|
221 TI = VADD(TD, TE);
|
Chris@10
|
222 }
|
Chris@10
|
223 {
|
Chris@10
|
224 V Tn, Ts, Tt, Tx, Tz, Tv, Tw, Ty, Tu;
|
Chris@10
|
225 Tn = VMUL(LDK(KP559016994), VSUB(Tb, Tm));
|
Chris@10
|
226 Ts = VADD(Tb, Tm);
|
Chris@10
|
227 Tt = VFNMS(LDK(KP250000000), Ts, Tr);
|
Chris@10
|
228 Tv = VSUB(T5, Ta);
|
Chris@10
|
229 Tw = VSUB(Tg, Tl);
|
Chris@10
|
230 Tx = VBYI(VFMA(LDK(KP951056516), Tv, VMUL(LDK(KP587785252), Tw)));
|
Chris@10
|
231 Tz = VBYI(VFNMS(LDK(KP587785252), Tv, VMUL(LDK(KP951056516), Tw)));
|
Chris@10
|
232 ST(&(x[WS(rs, 5)]), VADD(Tr, Ts), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
233 Ty = VSUB(Tt, Tn);
|
Chris@10
|
234 ST(&(x[WS(rs, 3)]), VSUB(Ty, Tz), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
235 ST(&(x[WS(rs, 7)]), VADD(Tz, Ty), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
236 Tu = VADD(Tn, Tt);
|
Chris@10
|
237 ST(&(x[WS(rs, 1)]), VSUB(Tu, Tx), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
238 ST(&(x[WS(rs, 9)]), VADD(Tx, Tu), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
239 }
|
Chris@10
|
240 {
|
Chris@10
|
241 V TM, TK, TL, TG, TO, TC, TF, TP, TN;
|
Chris@10
|
242 TM = VMUL(LDK(KP559016994), VSUB(TI, TJ));
|
Chris@10
|
243 TK = VADD(TI, TJ);
|
Chris@10
|
244 TL = VFNMS(LDK(KP250000000), TK, TH);
|
Chris@10
|
245 TC = VSUB(TA, TB);
|
Chris@10
|
246 TF = VSUB(TD, TE);
|
Chris@10
|
247 TG = VBYI(VFNMS(LDK(KP587785252), TF, VMUL(LDK(KP951056516), TC)));
|
Chris@10
|
248 TO = VBYI(VFMA(LDK(KP951056516), TF, VMUL(LDK(KP587785252), TC)));
|
Chris@10
|
249 ST(&(x[0]), VADD(TH, TK), ms, &(x[0]));
|
Chris@10
|
250 TP = VADD(TM, TL);
|
Chris@10
|
251 ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0]));
|
Chris@10
|
252 ST(&(x[WS(rs, 6)]), VSUB(TP, TO), ms, &(x[0]));
|
Chris@10
|
253 TN = VSUB(TL, TM);
|
Chris@10
|
254 ST(&(x[WS(rs, 2)]), VADD(TG, TN), ms, &(x[0]));
|
Chris@10
|
255 ST(&(x[WS(rs, 8)]), VSUB(TN, TG), ms, &(x[0]));
|
Chris@10
|
256 }
|
Chris@10
|
257 }
|
Chris@10
|
258 }
|
Chris@10
|
259 VLEAVE();
|
Chris@10
|
260 }
|
Chris@10
|
261
|
Chris@10
|
262 static const tw_instr twinstr[] = {
|
Chris@10
|
263 VTW(0, 1),
|
Chris@10
|
264 VTW(0, 2),
|
Chris@10
|
265 VTW(0, 3),
|
Chris@10
|
266 VTW(0, 4),
|
Chris@10
|
267 VTW(0, 5),
|
Chris@10
|
268 VTW(0, 6),
|
Chris@10
|
269 VTW(0, 7),
|
Chris@10
|
270 VTW(0, 8),
|
Chris@10
|
271 VTW(0, 9),
|
Chris@10
|
272 {TW_NEXT, VL, 0}
|
Chris@10
|
273 };
|
Chris@10
|
274
|
Chris@10
|
275 static const ct_desc desc = { 10, XSIMD_STRING("t1fv_10"), twinstr, &GENUS, {45, 24, 6, 0}, 0, 0, 0 };
|
Chris@10
|
276
|
Chris@10
|
277 void XSIMD(codelet_t1fv_10) (planner *p) {
|
Chris@10
|
278 X(kdft_dit_register) (p, t1fv_10, &desc);
|
Chris@10
|
279 }
|
Chris@10
|
280 #endif /* HAVE_FMA */
|