annotate src/fftw-3.3.3/dft/simd/common/t1fuv_7.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:37:59 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1fuv_7 -include t1fu.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 36 FP additions, 36 FP multiplications,
Chris@10 32 * (or, 15 additions, 15 multiplications, 21 fused multiply/add),
Chris@10 33 * 42 stack variables, 6 constants, and 14 memory accesses
Chris@10 34 */
Chris@10 35 #include "t1fu.h"
Chris@10 36
Chris@10 37 static void t1fuv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@10 40 DVK(KP801937735, +0.801937735804838252472204639014890102331838324);
Chris@10 41 DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@10 42 DVK(KP692021471, +0.692021471630095869627814897002069140197260599);
Chris@10 43 DVK(KP554958132, +0.554958132087371191422194871006410481067288862);
Chris@10 44 DVK(KP356895867, +0.356895867892209443894399510021300583399127187);
Chris@10 45 {
Chris@10 46 INT m;
Chris@10 47 R *x;
Chris@10 48 x = ri;
Chris@10 49 for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) {
Chris@10 50 V T1, T2, T4, Te, Tc, T9, T7;
Chris@10 51 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 52 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 53 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 54 Te = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 55 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 56 T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 57 T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 58 {
Chris@10 59 V T3, T5, Tf, Td, Ta, T8;
Chris@10 60 T3 = BYTWJ(&(W[0]), T2);
Chris@10 61 T5 = BYTWJ(&(W[TWVL * 10]), T4);
Chris@10 62 Tf = BYTWJ(&(W[TWVL * 6]), Te);
Chris@10 63 Td = BYTWJ(&(W[TWVL * 4]), Tc);
Chris@10 64 Ta = BYTWJ(&(W[TWVL * 8]), T9);
Chris@10 65 T8 = BYTWJ(&(W[TWVL * 2]), T7);
Chris@10 66 {
Chris@10 67 V T6, Tk, Tg, Tl, Tb, Tm;
Chris@10 68 T6 = VADD(T3, T5);
Chris@10 69 Tk = VSUB(T5, T3);
Chris@10 70 Tg = VADD(Td, Tf);
Chris@10 71 Tl = VSUB(Tf, Td);
Chris@10 72 Tb = VADD(T8, Ta);
Chris@10 73 Tm = VSUB(Ta, T8);
Chris@10 74 {
Chris@10 75 V Th, Ts, Tp, Tu, Tn, Tx, Ti, Tt;
Chris@10 76 Th = VFNMS(LDK(KP356895867), T6, Tg);
Chris@10 77 Ts = VFMA(LDK(KP554958132), Tl, Tk);
Chris@10 78 ST(&(x[0]), VADD(T1, VADD(T6, VADD(Tb, Tg))), ms, &(x[0]));
Chris@10 79 Tp = VFNMS(LDK(KP356895867), Tb, T6);
Chris@10 80 Tu = VFNMS(LDK(KP356895867), Tg, Tb);
Chris@10 81 Tn = VFMA(LDK(KP554958132), Tm, Tl);
Chris@10 82 Tx = VFNMS(LDK(KP554958132), Tk, Tm);
Chris@10 83 Ti = VFNMS(LDK(KP692021471), Th, Tb);
Chris@10 84 Tt = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), Ts, Tm));
Chris@10 85 {
Chris@10 86 V Tq, Tv, To, Ty, Tj, Tr, Tw;
Chris@10 87 Tq = VFNMS(LDK(KP692021471), Tp, Tg);
Chris@10 88 Tv = VFNMS(LDK(KP692021471), Tu, T6);
Chris@10 89 To = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tn, Tk));
Chris@10 90 Ty = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tx, Tl));
Chris@10 91 Tj = VFNMS(LDK(KP900968867), Ti, T1);
Chris@10 92 Tr = VFNMS(LDK(KP900968867), Tq, T1);
Chris@10 93 Tw = VFNMS(LDK(KP900968867), Tv, T1);
Chris@10 94 ST(&(x[WS(rs, 2)]), VFMAI(To, Tj), ms, &(x[0]));
Chris@10 95 ST(&(x[WS(rs, 5)]), VFNMSI(To, Tj), ms, &(x[WS(rs, 1)]));
Chris@10 96 ST(&(x[WS(rs, 1)]), VFMAI(Tt, Tr), ms, &(x[WS(rs, 1)]));
Chris@10 97 ST(&(x[WS(rs, 6)]), VFNMSI(Tt, Tr), ms, &(x[0]));
Chris@10 98 ST(&(x[WS(rs, 3)]), VFMAI(Ty, Tw), ms, &(x[WS(rs, 1)]));
Chris@10 99 ST(&(x[WS(rs, 4)]), VFNMSI(Ty, Tw), ms, &(x[0]));
Chris@10 100 }
Chris@10 101 }
Chris@10 102 }
Chris@10 103 }
Chris@10 104 }
Chris@10 105 }
Chris@10 106 VLEAVE();
Chris@10 107 }
Chris@10 108
Chris@10 109 static const tw_instr twinstr[] = {
Chris@10 110 VTW(0, 1),
Chris@10 111 VTW(0, 2),
Chris@10 112 VTW(0, 3),
Chris@10 113 VTW(0, 4),
Chris@10 114 VTW(0, 5),
Chris@10 115 VTW(0, 6),
Chris@10 116 {TW_NEXT, VL, 0}
Chris@10 117 };
Chris@10 118
Chris@10 119 static const ct_desc desc = { 7, XSIMD_STRING("t1fuv_7"), twinstr, &GENUS, {15, 15, 21, 0}, 0, 0, 0 };
Chris@10 120
Chris@10 121 void XSIMD(codelet_t1fuv_7) (planner *p) {
Chris@10 122 X(kdft_dit_register) (p, t1fuv_7, &desc);
Chris@10 123 }
Chris@10 124 #else /* HAVE_FMA */
Chris@10 125
Chris@10 126 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1fuv_7 -include t1fu.h */
Chris@10 127
Chris@10 128 /*
Chris@10 129 * This function contains 36 FP additions, 30 FP multiplications,
Chris@10 130 * (or, 24 additions, 18 multiplications, 12 fused multiply/add),
Chris@10 131 * 21 stack variables, 6 constants, and 14 memory accesses
Chris@10 132 */
Chris@10 133 #include "t1fu.h"
Chris@10 134
Chris@10 135 static void t1fuv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 136 {
Chris@10 137 DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@10 138 DVK(KP222520933, +0.222520933956314404288902564496794759466355569);
Chris@10 139 DVK(KP623489801, +0.623489801858733530525004884004239810632274731);
Chris@10 140 DVK(KP781831482, +0.781831482468029808708444526674057750232334519);
Chris@10 141 DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@10 142 DVK(KP433883739, +0.433883739117558120475768332848358754609990728);
Chris@10 143 {
Chris@10 144 INT m;
Chris@10 145 R *x;
Chris@10 146 x = ri;
Chris@10 147 for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) {
Chris@10 148 V T1, Tg, Tj, T6, Ti, Tb, Tk, Tp, To;
Chris@10 149 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 150 {
Chris@10 151 V Td, Tf, Tc, Te;
Chris@10 152 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 153 Td = BYTWJ(&(W[TWVL * 4]), Tc);
Chris@10 154 Te = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 155 Tf = BYTWJ(&(W[TWVL * 6]), Te);
Chris@10 156 Tg = VADD(Td, Tf);
Chris@10 157 Tj = VSUB(Tf, Td);
Chris@10 158 }
Chris@10 159 {
Chris@10 160 V T3, T5, T2, T4;
Chris@10 161 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 162 T3 = BYTWJ(&(W[0]), T2);
Chris@10 163 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 164 T5 = BYTWJ(&(W[TWVL * 10]), T4);
Chris@10 165 T6 = VADD(T3, T5);
Chris@10 166 Ti = VSUB(T5, T3);
Chris@10 167 }
Chris@10 168 {
Chris@10 169 V T8, Ta, T7, T9;
Chris@10 170 T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 171 T8 = BYTWJ(&(W[TWVL * 2]), T7);
Chris@10 172 T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 173 Ta = BYTWJ(&(W[TWVL * 8]), T9);
Chris@10 174 Tb = VADD(T8, Ta);
Chris@10 175 Tk = VSUB(Ta, T8);
Chris@10 176 }
Chris@10 177 ST(&(x[0]), VADD(T1, VADD(T6, VADD(Tb, Tg))), ms, &(x[0]));
Chris@10 178 Tp = VBYI(VFMA(LDK(KP433883739), Ti, VFNMS(LDK(KP781831482), Tk, VMUL(LDK(KP974927912), Tj))));
Chris@10 179 To = VFMA(LDK(KP623489801), Tb, VFNMS(LDK(KP222520933), Tg, VFNMS(LDK(KP900968867), T6, T1)));
Chris@10 180 ST(&(x[WS(rs, 4)]), VSUB(To, Tp), ms, &(x[0]));
Chris@10 181 ST(&(x[WS(rs, 3)]), VADD(To, Tp), ms, &(x[WS(rs, 1)]));
Chris@10 182 {
Chris@10 183 V Tl, Th, Tn, Tm;
Chris@10 184 Tl = VBYI(VFNMS(LDK(KP781831482), Tj, VFNMS(LDK(KP433883739), Tk, VMUL(LDK(KP974927912), Ti))));
Chris@10 185 Th = VFMA(LDK(KP623489801), Tg, VFNMS(LDK(KP900968867), Tb, VFNMS(LDK(KP222520933), T6, T1)));
Chris@10 186 ST(&(x[WS(rs, 5)]), VSUB(Th, Tl), ms, &(x[WS(rs, 1)]));
Chris@10 187 ST(&(x[WS(rs, 2)]), VADD(Th, Tl), ms, &(x[0]));
Chris@10 188 Tn = VBYI(VFMA(LDK(KP781831482), Ti, VFMA(LDK(KP974927912), Tk, VMUL(LDK(KP433883739), Tj))));
Chris@10 189 Tm = VFMA(LDK(KP623489801), T6, VFNMS(LDK(KP900968867), Tg, VFNMS(LDK(KP222520933), Tb, T1)));
Chris@10 190 ST(&(x[WS(rs, 6)]), VSUB(Tm, Tn), ms, &(x[0]));
Chris@10 191 ST(&(x[WS(rs, 1)]), VADD(Tm, Tn), ms, &(x[WS(rs, 1)]));
Chris@10 192 }
Chris@10 193 }
Chris@10 194 }
Chris@10 195 VLEAVE();
Chris@10 196 }
Chris@10 197
Chris@10 198 static const tw_instr twinstr[] = {
Chris@10 199 VTW(0, 1),
Chris@10 200 VTW(0, 2),
Chris@10 201 VTW(0, 3),
Chris@10 202 VTW(0, 4),
Chris@10 203 VTW(0, 5),
Chris@10 204 VTW(0, 6),
Chris@10 205 {TW_NEXT, VL, 0}
Chris@10 206 };
Chris@10 207
Chris@10 208 static const ct_desc desc = { 7, XSIMD_STRING("t1fuv_7"), twinstr, &GENUS, {24, 18, 12, 0}, 0, 0, 0 };
Chris@10 209
Chris@10 210 void XSIMD(codelet_t1fuv_7) (planner *p) {
Chris@10 211 X(kdft_dit_register) (p, t1fuv_7, &desc);
Chris@10 212 }
Chris@10 213 #endif /* HAVE_FMA */