Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:39:04 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1bv_9 -include t1b.h -sign 1 */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 54 FP additions, 54 FP multiplications,
|
Chris@10
|
32 * (or, 20 additions, 20 multiplications, 34 fused multiply/add),
|
Chris@10
|
33 * 67 stack variables, 19 constants, and 18 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "t1b.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t1bv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
|
Chris@10
|
40 DVK(KP907603734, +0.907603734547952313649323976213898122064543220);
|
Chris@10
|
41 DVK(KP666666666, +0.666666666666666666666666666666666666666666667);
|
Chris@10
|
42 DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
|
Chris@10
|
43 DVK(KP879385241, +0.879385241571816768108218554649462939872416269);
|
Chris@10
|
44 DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
Chris@10
|
45 DVK(KP826351822, +0.826351822333069651148283373230685203999624323);
|
Chris@10
|
46 DVK(KP347296355, +0.347296355333860697703433253538629592000751354);
|
Chris@10
|
47 DVK(KP898197570, +0.898197570222573798468955502359086394667167570);
|
Chris@10
|
48 DVK(KP673648177, +0.673648177666930348851716626769314796000375677);
|
Chris@10
|
49 DVK(KP420276625, +0.420276625461206169731530603237061658838781920);
|
Chris@10
|
50 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
51 DVK(KP586256827, +0.586256827714544512072145703099641959914944179);
|
Chris@10
|
52 DVK(KP968908795, +0.968908795874236621082202410917456709164223497);
|
Chris@10
|
53 DVK(KP726681596, +0.726681596905677465811651808188092531873167623);
|
Chris@10
|
54 DVK(KP439692620, +0.439692620785908384054109277324731469936208134);
|
Chris@10
|
55 DVK(KP203604859, +0.203604859554852403062088995281827210665664861);
|
Chris@10
|
56 DVK(KP152703644, +0.152703644666139302296566746461370407999248646);
|
Chris@10
|
57 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
58 {
|
Chris@10
|
59 INT m;
|
Chris@10
|
60 R *x;
|
Chris@10
|
61 x = ii;
|
Chris@10
|
62 for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) {
|
Chris@10
|
63 V T1, T3, T5, T9, Tn, Tb, Td, Th, Tj, Tx, T6;
|
Chris@10
|
64 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
65 {
|
Chris@10
|
66 V T2, T4, T8, Tm;
|
Chris@10
|
67 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
68 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
69 T8 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
70 Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
71 {
|
Chris@10
|
72 V Ta, Tc, Tg, Ti;
|
Chris@10
|
73 Ta = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
74 Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
75 Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
76 Ti = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
77 T3 = BYTW(&(W[TWVL * 4]), T2);
|
Chris@10
|
78 T5 = BYTW(&(W[TWVL * 10]), T4);
|
Chris@10
|
79 T9 = BYTW(&(W[TWVL * 2]), T8);
|
Chris@10
|
80 Tn = BYTW(&(W[0]), Tm);
|
Chris@10
|
81 Tb = BYTW(&(W[TWVL * 8]), Ta);
|
Chris@10
|
82 Td = BYTW(&(W[TWVL * 14]), Tc);
|
Chris@10
|
83 Th = BYTW(&(W[TWVL * 6]), Tg);
|
Chris@10
|
84 Tj = BYTW(&(W[TWVL * 12]), Ti);
|
Chris@10
|
85 }
|
Chris@10
|
86 }
|
Chris@10
|
87 Tx = VSUB(T3, T5);
|
Chris@10
|
88 T6 = VADD(T3, T5);
|
Chris@10
|
89 {
|
Chris@10
|
90 V Tl, Te, Tk, To, T7, TN;
|
Chris@10
|
91 Tl = VSUB(Td, Tb);
|
Chris@10
|
92 Te = VADD(Tb, Td);
|
Chris@10
|
93 Tk = VSUB(Th, Tj);
|
Chris@10
|
94 To = VADD(Th, Tj);
|
Chris@10
|
95 T7 = VFNMS(LDK(KP500000000), T6, T1);
|
Chris@10
|
96 TN = VADD(T1, T6);
|
Chris@10
|
97 {
|
Chris@10
|
98 V Tf, TP, Tp, TO;
|
Chris@10
|
99 Tf = VFNMS(LDK(KP500000000), Te, T9);
|
Chris@10
|
100 TP = VADD(T9, Te);
|
Chris@10
|
101 Tp = VFNMS(LDK(KP500000000), To, Tn);
|
Chris@10
|
102 TO = VADD(Tn, To);
|
Chris@10
|
103 {
|
Chris@10
|
104 V Tz, TC, Tu, TD, TA, Tq, TQ, TS;
|
Chris@10
|
105 Tz = VFNMS(LDK(KP152703644), Tl, Tf);
|
Chris@10
|
106 TC = VFMA(LDK(KP203604859), Tf, Tl);
|
Chris@10
|
107 Tu = VFNMS(LDK(KP439692620), Tk, Tf);
|
Chris@10
|
108 TD = VFNMS(LDK(KP726681596), Tk, Tp);
|
Chris@10
|
109 TA = VFMA(LDK(KP968908795), Tp, Tk);
|
Chris@10
|
110 Tq = VFNMS(LDK(KP586256827), Tp, Tl);
|
Chris@10
|
111 TQ = VADD(TO, TP);
|
Chris@10
|
112 TS = VMUL(LDK(KP866025403), VSUB(TO, TP));
|
Chris@10
|
113 {
|
Chris@10
|
114 V TI, TB, TH, TE, Tr, TR, Tw, Tv;
|
Chris@10
|
115 Tv = VFNMS(LDK(KP420276625), Tu, Tl);
|
Chris@10
|
116 TI = VFMA(LDK(KP673648177), TA, Tz);
|
Chris@10
|
117 TB = VFNMS(LDK(KP673648177), TA, Tz);
|
Chris@10
|
118 TH = VFNMS(LDK(KP898197570), TD, TC);
|
Chris@10
|
119 TE = VFMA(LDK(KP898197570), TD, TC);
|
Chris@10
|
120 Tr = VFNMS(LDK(KP347296355), Tq, Tk);
|
Chris@10
|
121 ST(&(x[0]), VADD(TQ, TN), ms, &(x[0]));
|
Chris@10
|
122 TR = VFNMS(LDK(KP500000000), TQ, TN);
|
Chris@10
|
123 Tw = VFNMS(LDK(KP826351822), Tv, Tp);
|
Chris@10
|
124 {
|
Chris@10
|
125 V TM, TL, TF, TJ, Ts, Ty, TG, TK, Tt;
|
Chris@10
|
126 TM = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tx, TI));
|
Chris@10
|
127 TL = VFMA(LDK(KP852868531), TE, T7);
|
Chris@10
|
128 TF = VFNMS(LDK(KP500000000), TE, TB);
|
Chris@10
|
129 TJ = VFMA(LDK(KP666666666), TI, TH);
|
Chris@10
|
130 Ts = VFNMS(LDK(KP907603734), Tr, Tf);
|
Chris@10
|
131 ST(&(x[WS(rs, 6)]), VFNMSI(TS, TR), ms, &(x[0]));
|
Chris@10
|
132 ST(&(x[WS(rs, 3)]), VFMAI(TS, TR), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
133 Ty = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tx, Tw));
|
Chris@10
|
134 ST(&(x[WS(rs, 8)]), VFNMSI(TM, TL), ms, &(x[0]));
|
Chris@10
|
135 ST(&(x[WS(rs, 1)]), VFMAI(TM, TL), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
136 TG = VFMA(LDK(KP852868531), TF, T7);
|
Chris@10
|
137 TK = VMUL(LDK(KP866025403), VFNMS(LDK(KP852868531), TJ, Tx));
|
Chris@10
|
138 Tt = VFNMS(LDK(KP939692620), Ts, T7);
|
Chris@10
|
139 ST(&(x[WS(rs, 5)]), VFNMSI(TK, TG), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
140 ST(&(x[WS(rs, 4)]), VFMAI(TK, TG), ms, &(x[0]));
|
Chris@10
|
141 ST(&(x[WS(rs, 2)]), VFMAI(Ty, Tt), ms, &(x[0]));
|
Chris@10
|
142 ST(&(x[WS(rs, 7)]), VFNMSI(Ty, Tt), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
143 }
|
Chris@10
|
144 }
|
Chris@10
|
145 }
|
Chris@10
|
146 }
|
Chris@10
|
147 }
|
Chris@10
|
148 }
|
Chris@10
|
149 }
|
Chris@10
|
150 VLEAVE();
|
Chris@10
|
151 }
|
Chris@10
|
152
|
Chris@10
|
153 static const tw_instr twinstr[] = {
|
Chris@10
|
154 VTW(0, 1),
|
Chris@10
|
155 VTW(0, 2),
|
Chris@10
|
156 VTW(0, 3),
|
Chris@10
|
157 VTW(0, 4),
|
Chris@10
|
158 VTW(0, 5),
|
Chris@10
|
159 VTW(0, 6),
|
Chris@10
|
160 VTW(0, 7),
|
Chris@10
|
161 VTW(0, 8),
|
Chris@10
|
162 {TW_NEXT, VL, 0}
|
Chris@10
|
163 };
|
Chris@10
|
164
|
Chris@10
|
165 static const ct_desc desc = { 9, XSIMD_STRING("t1bv_9"), twinstr, &GENUS, {20, 20, 34, 0}, 0, 0, 0 };
|
Chris@10
|
166
|
Chris@10
|
167 void XSIMD(codelet_t1bv_9) (planner *p) {
|
Chris@10
|
168 X(kdft_dit_register) (p, t1bv_9, &desc);
|
Chris@10
|
169 }
|
Chris@10
|
170 #else /* HAVE_FMA */
|
Chris@10
|
171
|
Chris@10
|
172 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1bv_9 -include t1b.h -sign 1 */
|
Chris@10
|
173
|
Chris@10
|
174 /*
|
Chris@10
|
175 * This function contains 54 FP additions, 42 FP multiplications,
|
Chris@10
|
176 * (or, 38 additions, 26 multiplications, 16 fused multiply/add),
|
Chris@10
|
177 * 38 stack variables, 14 constants, and 18 memory accesses
|
Chris@10
|
178 */
|
Chris@10
|
179 #include "t1b.h"
|
Chris@10
|
180
|
Chris@10
|
181 static void t1bv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
182 {
|
Chris@10
|
183 DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
|
Chris@10
|
184 DVK(KP296198132, +0.296198132726023843175338011893050938967728390);
|
Chris@10
|
185 DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
|
Chris@10
|
186 DVK(KP173648177, +0.173648177666930348851716626769314796000375677);
|
Chris@10
|
187 DVK(KP556670399, +0.556670399226419366452912952047023132968291906);
|
Chris@10
|
188 DVK(KP766044443, +0.766044443118978035202392650555416673935832457);
|
Chris@10
|
189 DVK(KP642787609, +0.642787609686539326322643409907263432907559884);
|
Chris@10
|
190 DVK(KP663413948, +0.663413948168938396205421319635891297216863310);
|
Chris@10
|
191 DVK(KP150383733, +0.150383733180435296639271897612501926072238258);
|
Chris@10
|
192 DVK(KP342020143, +0.342020143325668733044099614682259580763083368);
|
Chris@10
|
193 DVK(KP813797681, +0.813797681349373692844693217248393223289101568);
|
Chris@10
|
194 DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
Chris@10
|
195 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
196 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
197 {
|
Chris@10
|
198 INT m;
|
Chris@10
|
199 R *x;
|
Chris@10
|
200 x = ii;
|
Chris@10
|
201 for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) {
|
Chris@10
|
202 V T1, T6, Tu, Tg, Tf, TD, Tq, Tp, TE;
|
Chris@10
|
203 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
204 {
|
Chris@10
|
205 V T3, T5, T2, T4;
|
Chris@10
|
206 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
207 T3 = BYTW(&(W[TWVL * 4]), T2);
|
Chris@10
|
208 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
209 T5 = BYTW(&(W[TWVL * 10]), T4);
|
Chris@10
|
210 T6 = VADD(T3, T5);
|
Chris@10
|
211 Tu = VMUL(LDK(KP866025403), VSUB(T3, T5));
|
Chris@10
|
212 }
|
Chris@10
|
213 {
|
Chris@10
|
214 V T9, Td, Tb, T8, Tc, Ta, Te;
|
Chris@10
|
215 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
216 T9 = BYTW(&(W[0]), T8);
|
Chris@10
|
217 Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
218 Td = BYTW(&(W[TWVL * 12]), Tc);
|
Chris@10
|
219 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
220 Tb = BYTW(&(W[TWVL * 6]), Ta);
|
Chris@10
|
221 Tg = VSUB(Tb, Td);
|
Chris@10
|
222 Te = VADD(Tb, Td);
|
Chris@10
|
223 Tf = VFNMS(LDK(KP500000000), Te, T9);
|
Chris@10
|
224 TD = VADD(T9, Te);
|
Chris@10
|
225 }
|
Chris@10
|
226 {
|
Chris@10
|
227 V Tj, Tn, Tl, Ti, Tm, Tk, To;
|
Chris@10
|
228 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
229 Tj = BYTW(&(W[TWVL * 2]), Ti);
|
Chris@10
|
230 Tm = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
231 Tn = BYTW(&(W[TWVL * 14]), Tm);
|
Chris@10
|
232 Tk = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
233 Tl = BYTW(&(W[TWVL * 8]), Tk);
|
Chris@10
|
234 Tq = VSUB(Tl, Tn);
|
Chris@10
|
235 To = VADD(Tl, Tn);
|
Chris@10
|
236 Tp = VFNMS(LDK(KP500000000), To, Tj);
|
Chris@10
|
237 TE = VADD(Tj, To);
|
Chris@10
|
238 }
|
Chris@10
|
239 {
|
Chris@10
|
240 V TF, TG, TH, TI;
|
Chris@10
|
241 TF = VBYI(VMUL(LDK(KP866025403), VSUB(TD, TE)));
|
Chris@10
|
242 TG = VADD(T1, T6);
|
Chris@10
|
243 TH = VADD(TD, TE);
|
Chris@10
|
244 TI = VFNMS(LDK(KP500000000), TH, TG);
|
Chris@10
|
245 ST(&(x[WS(rs, 3)]), VADD(TF, TI), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
246 ST(&(x[0]), VADD(TG, TH), ms, &(x[0]));
|
Chris@10
|
247 ST(&(x[WS(rs, 6)]), VSUB(TI, TF), ms, &(x[0]));
|
Chris@10
|
248 }
|
Chris@10
|
249 {
|
Chris@10
|
250 V TC, Tv, Tw, Tx, Th, Tr, Ts, T7, TB;
|
Chris@10
|
251 TC = VBYI(VSUB(VFMA(LDK(KP984807753), Tf, VFMA(LDK(KP813797681), Tq, VFNMS(LDK(KP150383733), Tg, VMUL(LDK(KP342020143), Tp)))), Tu));
|
Chris@10
|
252 Tv = VFMA(LDK(KP663413948), Tg, VMUL(LDK(KP642787609), Tf));
|
Chris@10
|
253 Tw = VFMA(LDK(KP150383733), Tq, VMUL(LDK(KP984807753), Tp));
|
Chris@10
|
254 Tx = VADD(Tv, Tw);
|
Chris@10
|
255 Th = VFNMS(LDK(KP556670399), Tg, VMUL(LDK(KP766044443), Tf));
|
Chris@10
|
256 Tr = VFNMS(LDK(KP852868531), Tq, VMUL(LDK(KP173648177), Tp));
|
Chris@10
|
257 Ts = VADD(Th, Tr);
|
Chris@10
|
258 T7 = VFNMS(LDK(KP500000000), T6, T1);
|
Chris@10
|
259 TB = VFMA(LDK(KP852868531), Tg, VFMA(LDK(KP173648177), Tf, VFMA(LDK(KP296198132), Tq, VFNMS(LDK(KP939692620), Tp, T7))));
|
Chris@10
|
260 ST(&(x[WS(rs, 7)]), VSUB(TB, TC), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
261 ST(&(x[WS(rs, 2)]), VADD(TB, TC), ms, &(x[0]));
|
Chris@10
|
262 {
|
Chris@10
|
263 V Tt, Ty, Tz, TA;
|
Chris@10
|
264 Tt = VADD(T7, Ts);
|
Chris@10
|
265 Ty = VBYI(VADD(Tu, Tx));
|
Chris@10
|
266 ST(&(x[WS(rs, 8)]), VSUB(Tt, Ty), ms, &(x[0]));
|
Chris@10
|
267 ST(&(x[WS(rs, 1)]), VADD(Tt, Ty), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
268 Tz = VBYI(VADD(Tu, VFNMS(LDK(KP500000000), Tx, VMUL(LDK(KP866025403), VSUB(Th, Tr)))));
|
Chris@10
|
269 TA = VFMA(LDK(KP866025403), VSUB(Tw, Tv), VFNMS(LDK(KP500000000), Ts, T7));
|
Chris@10
|
270 ST(&(x[WS(rs, 4)]), VADD(Tz, TA), ms, &(x[0]));
|
Chris@10
|
271 ST(&(x[WS(rs, 5)]), VSUB(TA, Tz), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
272 }
|
Chris@10
|
273 }
|
Chris@10
|
274 }
|
Chris@10
|
275 }
|
Chris@10
|
276 VLEAVE();
|
Chris@10
|
277 }
|
Chris@10
|
278
|
Chris@10
|
279 static const tw_instr twinstr[] = {
|
Chris@10
|
280 VTW(0, 1),
|
Chris@10
|
281 VTW(0, 2),
|
Chris@10
|
282 VTW(0, 3),
|
Chris@10
|
283 VTW(0, 4),
|
Chris@10
|
284 VTW(0, 5),
|
Chris@10
|
285 VTW(0, 6),
|
Chris@10
|
286 VTW(0, 7),
|
Chris@10
|
287 VTW(0, 8),
|
Chris@10
|
288 {TW_NEXT, VL, 0}
|
Chris@10
|
289 };
|
Chris@10
|
290
|
Chris@10
|
291 static const ct_desc desc = { 9, XSIMD_STRING("t1bv_9"), twinstr, &GENUS, {38, 26, 16, 0}, 0, 0, 0 };
|
Chris@10
|
292
|
Chris@10
|
293 void XSIMD(codelet_t1bv_9) (planner *p) {
|
Chris@10
|
294 X(kdft_dit_register) (p, t1bv_9, &desc);
|
Chris@10
|
295 }
|
Chris@10
|
296 #endif /* HAVE_FMA */
|