annotate src/fftw-3.3.3/dft/simd/common/t1bv_9.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:39:04 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1bv_9 -include t1b.h -sign 1 */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 54 FP additions, 54 FP multiplications,
Chris@10 32 * (or, 20 additions, 20 multiplications, 34 fused multiply/add),
Chris@10 33 * 67 stack variables, 19 constants, and 18 memory accesses
Chris@10 34 */
Chris@10 35 #include "t1b.h"
Chris@10 36
Chris@10 37 static void t1bv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
Chris@10 40 DVK(KP907603734, +0.907603734547952313649323976213898122064543220);
Chris@10 41 DVK(KP666666666, +0.666666666666666666666666666666666666666666667);
Chris@10 42 DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
Chris@10 43 DVK(KP879385241, +0.879385241571816768108218554649462939872416269);
Chris@10 44 DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
Chris@10 45 DVK(KP826351822, +0.826351822333069651148283373230685203999624323);
Chris@10 46 DVK(KP347296355, +0.347296355333860697703433253538629592000751354);
Chris@10 47 DVK(KP898197570, +0.898197570222573798468955502359086394667167570);
Chris@10 48 DVK(KP673648177, +0.673648177666930348851716626769314796000375677);
Chris@10 49 DVK(KP420276625, +0.420276625461206169731530603237061658838781920);
Chris@10 50 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 51 DVK(KP586256827, +0.586256827714544512072145703099641959914944179);
Chris@10 52 DVK(KP968908795, +0.968908795874236621082202410917456709164223497);
Chris@10 53 DVK(KP726681596, +0.726681596905677465811651808188092531873167623);
Chris@10 54 DVK(KP439692620, +0.439692620785908384054109277324731469936208134);
Chris@10 55 DVK(KP203604859, +0.203604859554852403062088995281827210665664861);
Chris@10 56 DVK(KP152703644, +0.152703644666139302296566746461370407999248646);
Chris@10 57 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 58 {
Chris@10 59 INT m;
Chris@10 60 R *x;
Chris@10 61 x = ii;
Chris@10 62 for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) {
Chris@10 63 V T1, T3, T5, T9, Tn, Tb, Td, Th, Tj, Tx, T6;
Chris@10 64 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 65 {
Chris@10 66 V T2, T4, T8, Tm;
Chris@10 67 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 68 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 69 T8 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 70 Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 71 {
Chris@10 72 V Ta, Tc, Tg, Ti;
Chris@10 73 Ta = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 74 Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@10 75 Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 76 Ti = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@10 77 T3 = BYTW(&(W[TWVL * 4]), T2);
Chris@10 78 T5 = BYTW(&(W[TWVL * 10]), T4);
Chris@10 79 T9 = BYTW(&(W[TWVL * 2]), T8);
Chris@10 80 Tn = BYTW(&(W[0]), Tm);
Chris@10 81 Tb = BYTW(&(W[TWVL * 8]), Ta);
Chris@10 82 Td = BYTW(&(W[TWVL * 14]), Tc);
Chris@10 83 Th = BYTW(&(W[TWVL * 6]), Tg);
Chris@10 84 Tj = BYTW(&(W[TWVL * 12]), Ti);
Chris@10 85 }
Chris@10 86 }
Chris@10 87 Tx = VSUB(T3, T5);
Chris@10 88 T6 = VADD(T3, T5);
Chris@10 89 {
Chris@10 90 V Tl, Te, Tk, To, T7, TN;
Chris@10 91 Tl = VSUB(Td, Tb);
Chris@10 92 Te = VADD(Tb, Td);
Chris@10 93 Tk = VSUB(Th, Tj);
Chris@10 94 To = VADD(Th, Tj);
Chris@10 95 T7 = VFNMS(LDK(KP500000000), T6, T1);
Chris@10 96 TN = VADD(T1, T6);
Chris@10 97 {
Chris@10 98 V Tf, TP, Tp, TO;
Chris@10 99 Tf = VFNMS(LDK(KP500000000), Te, T9);
Chris@10 100 TP = VADD(T9, Te);
Chris@10 101 Tp = VFNMS(LDK(KP500000000), To, Tn);
Chris@10 102 TO = VADD(Tn, To);
Chris@10 103 {
Chris@10 104 V Tz, TC, Tu, TD, TA, Tq, TQ, TS;
Chris@10 105 Tz = VFNMS(LDK(KP152703644), Tl, Tf);
Chris@10 106 TC = VFMA(LDK(KP203604859), Tf, Tl);
Chris@10 107 Tu = VFNMS(LDK(KP439692620), Tk, Tf);
Chris@10 108 TD = VFNMS(LDK(KP726681596), Tk, Tp);
Chris@10 109 TA = VFMA(LDK(KP968908795), Tp, Tk);
Chris@10 110 Tq = VFNMS(LDK(KP586256827), Tp, Tl);
Chris@10 111 TQ = VADD(TO, TP);
Chris@10 112 TS = VMUL(LDK(KP866025403), VSUB(TO, TP));
Chris@10 113 {
Chris@10 114 V TI, TB, TH, TE, Tr, TR, Tw, Tv;
Chris@10 115 Tv = VFNMS(LDK(KP420276625), Tu, Tl);
Chris@10 116 TI = VFMA(LDK(KP673648177), TA, Tz);
Chris@10 117 TB = VFNMS(LDK(KP673648177), TA, Tz);
Chris@10 118 TH = VFNMS(LDK(KP898197570), TD, TC);
Chris@10 119 TE = VFMA(LDK(KP898197570), TD, TC);
Chris@10 120 Tr = VFNMS(LDK(KP347296355), Tq, Tk);
Chris@10 121 ST(&(x[0]), VADD(TQ, TN), ms, &(x[0]));
Chris@10 122 TR = VFNMS(LDK(KP500000000), TQ, TN);
Chris@10 123 Tw = VFNMS(LDK(KP826351822), Tv, Tp);
Chris@10 124 {
Chris@10 125 V TM, TL, TF, TJ, Ts, Ty, TG, TK, Tt;
Chris@10 126 TM = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tx, TI));
Chris@10 127 TL = VFMA(LDK(KP852868531), TE, T7);
Chris@10 128 TF = VFNMS(LDK(KP500000000), TE, TB);
Chris@10 129 TJ = VFMA(LDK(KP666666666), TI, TH);
Chris@10 130 Ts = VFNMS(LDK(KP907603734), Tr, Tf);
Chris@10 131 ST(&(x[WS(rs, 6)]), VFNMSI(TS, TR), ms, &(x[0]));
Chris@10 132 ST(&(x[WS(rs, 3)]), VFMAI(TS, TR), ms, &(x[WS(rs, 1)]));
Chris@10 133 Ty = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tx, Tw));
Chris@10 134 ST(&(x[WS(rs, 8)]), VFNMSI(TM, TL), ms, &(x[0]));
Chris@10 135 ST(&(x[WS(rs, 1)]), VFMAI(TM, TL), ms, &(x[WS(rs, 1)]));
Chris@10 136 TG = VFMA(LDK(KP852868531), TF, T7);
Chris@10 137 TK = VMUL(LDK(KP866025403), VFNMS(LDK(KP852868531), TJ, Tx));
Chris@10 138 Tt = VFNMS(LDK(KP939692620), Ts, T7);
Chris@10 139 ST(&(x[WS(rs, 5)]), VFNMSI(TK, TG), ms, &(x[WS(rs, 1)]));
Chris@10 140 ST(&(x[WS(rs, 4)]), VFMAI(TK, TG), ms, &(x[0]));
Chris@10 141 ST(&(x[WS(rs, 2)]), VFMAI(Ty, Tt), ms, &(x[0]));
Chris@10 142 ST(&(x[WS(rs, 7)]), VFNMSI(Ty, Tt), ms, &(x[WS(rs, 1)]));
Chris@10 143 }
Chris@10 144 }
Chris@10 145 }
Chris@10 146 }
Chris@10 147 }
Chris@10 148 }
Chris@10 149 }
Chris@10 150 VLEAVE();
Chris@10 151 }
Chris@10 152
Chris@10 153 static const tw_instr twinstr[] = {
Chris@10 154 VTW(0, 1),
Chris@10 155 VTW(0, 2),
Chris@10 156 VTW(0, 3),
Chris@10 157 VTW(0, 4),
Chris@10 158 VTW(0, 5),
Chris@10 159 VTW(0, 6),
Chris@10 160 VTW(0, 7),
Chris@10 161 VTW(0, 8),
Chris@10 162 {TW_NEXT, VL, 0}
Chris@10 163 };
Chris@10 164
Chris@10 165 static const ct_desc desc = { 9, XSIMD_STRING("t1bv_9"), twinstr, &GENUS, {20, 20, 34, 0}, 0, 0, 0 };
Chris@10 166
Chris@10 167 void XSIMD(codelet_t1bv_9) (planner *p) {
Chris@10 168 X(kdft_dit_register) (p, t1bv_9, &desc);
Chris@10 169 }
Chris@10 170 #else /* HAVE_FMA */
Chris@10 171
Chris@10 172 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1bv_9 -include t1b.h -sign 1 */
Chris@10 173
Chris@10 174 /*
Chris@10 175 * This function contains 54 FP additions, 42 FP multiplications,
Chris@10 176 * (or, 38 additions, 26 multiplications, 16 fused multiply/add),
Chris@10 177 * 38 stack variables, 14 constants, and 18 memory accesses
Chris@10 178 */
Chris@10 179 #include "t1b.h"
Chris@10 180
Chris@10 181 static void t1bv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 182 {
Chris@10 183 DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
Chris@10 184 DVK(KP296198132, +0.296198132726023843175338011893050938967728390);
Chris@10 185 DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
Chris@10 186 DVK(KP173648177, +0.173648177666930348851716626769314796000375677);
Chris@10 187 DVK(KP556670399, +0.556670399226419366452912952047023132968291906);
Chris@10 188 DVK(KP766044443, +0.766044443118978035202392650555416673935832457);
Chris@10 189 DVK(KP642787609, +0.642787609686539326322643409907263432907559884);
Chris@10 190 DVK(KP663413948, +0.663413948168938396205421319635891297216863310);
Chris@10 191 DVK(KP150383733, +0.150383733180435296639271897612501926072238258);
Chris@10 192 DVK(KP342020143, +0.342020143325668733044099614682259580763083368);
Chris@10 193 DVK(KP813797681, +0.813797681349373692844693217248393223289101568);
Chris@10 194 DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
Chris@10 195 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 196 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 197 {
Chris@10 198 INT m;
Chris@10 199 R *x;
Chris@10 200 x = ii;
Chris@10 201 for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) {
Chris@10 202 V T1, T6, Tu, Tg, Tf, TD, Tq, Tp, TE;
Chris@10 203 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 204 {
Chris@10 205 V T3, T5, T2, T4;
Chris@10 206 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 207 T3 = BYTW(&(W[TWVL * 4]), T2);
Chris@10 208 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 209 T5 = BYTW(&(W[TWVL * 10]), T4);
Chris@10 210 T6 = VADD(T3, T5);
Chris@10 211 Tu = VMUL(LDK(KP866025403), VSUB(T3, T5));
Chris@10 212 }
Chris@10 213 {
Chris@10 214 V T9, Td, Tb, T8, Tc, Ta, Te;
Chris@10 215 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 216 T9 = BYTW(&(W[0]), T8);
Chris@10 217 Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@10 218 Td = BYTW(&(W[TWVL * 12]), Tc);
Chris@10 219 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 220 Tb = BYTW(&(W[TWVL * 6]), Ta);
Chris@10 221 Tg = VSUB(Tb, Td);
Chris@10 222 Te = VADD(Tb, Td);
Chris@10 223 Tf = VFNMS(LDK(KP500000000), Te, T9);
Chris@10 224 TD = VADD(T9, Te);
Chris@10 225 }
Chris@10 226 {
Chris@10 227 V Tj, Tn, Tl, Ti, Tm, Tk, To;
Chris@10 228 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 229 Tj = BYTW(&(W[TWVL * 2]), Ti);
Chris@10 230 Tm = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@10 231 Tn = BYTW(&(W[TWVL * 14]), Tm);
Chris@10 232 Tk = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 233 Tl = BYTW(&(W[TWVL * 8]), Tk);
Chris@10 234 Tq = VSUB(Tl, Tn);
Chris@10 235 To = VADD(Tl, Tn);
Chris@10 236 Tp = VFNMS(LDK(KP500000000), To, Tj);
Chris@10 237 TE = VADD(Tj, To);
Chris@10 238 }
Chris@10 239 {
Chris@10 240 V TF, TG, TH, TI;
Chris@10 241 TF = VBYI(VMUL(LDK(KP866025403), VSUB(TD, TE)));
Chris@10 242 TG = VADD(T1, T6);
Chris@10 243 TH = VADD(TD, TE);
Chris@10 244 TI = VFNMS(LDK(KP500000000), TH, TG);
Chris@10 245 ST(&(x[WS(rs, 3)]), VADD(TF, TI), ms, &(x[WS(rs, 1)]));
Chris@10 246 ST(&(x[0]), VADD(TG, TH), ms, &(x[0]));
Chris@10 247 ST(&(x[WS(rs, 6)]), VSUB(TI, TF), ms, &(x[0]));
Chris@10 248 }
Chris@10 249 {
Chris@10 250 V TC, Tv, Tw, Tx, Th, Tr, Ts, T7, TB;
Chris@10 251 TC = VBYI(VSUB(VFMA(LDK(KP984807753), Tf, VFMA(LDK(KP813797681), Tq, VFNMS(LDK(KP150383733), Tg, VMUL(LDK(KP342020143), Tp)))), Tu));
Chris@10 252 Tv = VFMA(LDK(KP663413948), Tg, VMUL(LDK(KP642787609), Tf));
Chris@10 253 Tw = VFMA(LDK(KP150383733), Tq, VMUL(LDK(KP984807753), Tp));
Chris@10 254 Tx = VADD(Tv, Tw);
Chris@10 255 Th = VFNMS(LDK(KP556670399), Tg, VMUL(LDK(KP766044443), Tf));
Chris@10 256 Tr = VFNMS(LDK(KP852868531), Tq, VMUL(LDK(KP173648177), Tp));
Chris@10 257 Ts = VADD(Th, Tr);
Chris@10 258 T7 = VFNMS(LDK(KP500000000), T6, T1);
Chris@10 259 TB = VFMA(LDK(KP852868531), Tg, VFMA(LDK(KP173648177), Tf, VFMA(LDK(KP296198132), Tq, VFNMS(LDK(KP939692620), Tp, T7))));
Chris@10 260 ST(&(x[WS(rs, 7)]), VSUB(TB, TC), ms, &(x[WS(rs, 1)]));
Chris@10 261 ST(&(x[WS(rs, 2)]), VADD(TB, TC), ms, &(x[0]));
Chris@10 262 {
Chris@10 263 V Tt, Ty, Tz, TA;
Chris@10 264 Tt = VADD(T7, Ts);
Chris@10 265 Ty = VBYI(VADD(Tu, Tx));
Chris@10 266 ST(&(x[WS(rs, 8)]), VSUB(Tt, Ty), ms, &(x[0]));
Chris@10 267 ST(&(x[WS(rs, 1)]), VADD(Tt, Ty), ms, &(x[WS(rs, 1)]));
Chris@10 268 Tz = VBYI(VADD(Tu, VFNMS(LDK(KP500000000), Tx, VMUL(LDK(KP866025403), VSUB(Th, Tr)))));
Chris@10 269 TA = VFMA(LDK(KP866025403), VSUB(Tw, Tv), VFNMS(LDK(KP500000000), Ts, T7));
Chris@10 270 ST(&(x[WS(rs, 4)]), VADD(Tz, TA), ms, &(x[0]));
Chris@10 271 ST(&(x[WS(rs, 5)]), VSUB(TA, Tz), ms, &(x[WS(rs, 1)]));
Chris@10 272 }
Chris@10 273 }
Chris@10 274 }
Chris@10 275 }
Chris@10 276 VLEAVE();
Chris@10 277 }
Chris@10 278
Chris@10 279 static const tw_instr twinstr[] = {
Chris@10 280 VTW(0, 1),
Chris@10 281 VTW(0, 2),
Chris@10 282 VTW(0, 3),
Chris@10 283 VTW(0, 4),
Chris@10 284 VTW(0, 5),
Chris@10 285 VTW(0, 6),
Chris@10 286 VTW(0, 7),
Chris@10 287 VTW(0, 8),
Chris@10 288 {TW_NEXT, VL, 0}
Chris@10 289 };
Chris@10 290
Chris@10 291 static const ct_desc desc = { 9, XSIMD_STRING("t1bv_9"), twinstr, &GENUS, {38, 26, 16, 0}, 0, 0, 0 };
Chris@10 292
Chris@10 293 void XSIMD(codelet_t1bv_9) (planner *p) {
Chris@10 294 X(kdft_dit_register) (p, t1bv_9, &desc);
Chris@10 295 }
Chris@10 296 #endif /* HAVE_FMA */