Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:39:04 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1bv_8 -include t1b.h -sign 1 */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 33 FP additions, 24 FP multiplications,
|
Chris@10
|
32 * (or, 23 additions, 14 multiplications, 10 fused multiply/add),
|
Chris@10
|
33 * 36 stack variables, 1 constants, and 16 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "t1b.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t1bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
40 {
|
Chris@10
|
41 INT m;
|
Chris@10
|
42 R *x;
|
Chris@10
|
43 x = ii;
|
Chris@10
|
44 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
|
Chris@10
|
45 V T1, T2, Th, Tj, T5, T7, Ta, Tc;
|
Chris@10
|
46 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
47 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
48 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
49 Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
50 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
51 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
52 Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
53 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
54 {
|
Chris@10
|
55 V T3, Ti, Tk, T6, T8, Tb, Td;
|
Chris@10
|
56 T3 = BYTW(&(W[TWVL * 6]), T2);
|
Chris@10
|
57 Ti = BYTW(&(W[TWVL * 2]), Th);
|
Chris@10
|
58 Tk = BYTW(&(W[TWVL * 10]), Tj);
|
Chris@10
|
59 T6 = BYTW(&(W[0]), T5);
|
Chris@10
|
60 T8 = BYTW(&(W[TWVL * 8]), T7);
|
Chris@10
|
61 Tb = BYTW(&(W[TWVL * 12]), Ta);
|
Chris@10
|
62 Td = BYTW(&(W[TWVL * 4]), Tc);
|
Chris@10
|
63 {
|
Chris@10
|
64 V Tq, T4, Tr, Tl, Tt, T9, Tu, Te, Tw, Ts;
|
Chris@10
|
65 Tq = VADD(T1, T3);
|
Chris@10
|
66 T4 = VSUB(T1, T3);
|
Chris@10
|
67 Tr = VADD(Ti, Tk);
|
Chris@10
|
68 Tl = VSUB(Ti, Tk);
|
Chris@10
|
69 Tt = VADD(T6, T8);
|
Chris@10
|
70 T9 = VSUB(T6, T8);
|
Chris@10
|
71 Tu = VADD(Tb, Td);
|
Chris@10
|
72 Te = VSUB(Tb, Td);
|
Chris@10
|
73 Tw = VADD(Tq, Tr);
|
Chris@10
|
74 Ts = VSUB(Tq, Tr);
|
Chris@10
|
75 {
|
Chris@10
|
76 V Tx, Tv, Tm, Tf;
|
Chris@10
|
77 Tx = VADD(Tt, Tu);
|
Chris@10
|
78 Tv = VSUB(Tt, Tu);
|
Chris@10
|
79 Tm = VSUB(T9, Te);
|
Chris@10
|
80 Tf = VADD(T9, Te);
|
Chris@10
|
81 {
|
Chris@10
|
82 V Tp, Tn, To, Tg;
|
Chris@10
|
83 ST(&(x[0]), VADD(Tw, Tx), ms, &(x[0]));
|
Chris@10
|
84 ST(&(x[WS(rs, 4)]), VSUB(Tw, Tx), ms, &(x[0]));
|
Chris@10
|
85 ST(&(x[WS(rs, 2)]), VFMAI(Tv, Ts), ms, &(x[0]));
|
Chris@10
|
86 ST(&(x[WS(rs, 6)]), VFNMSI(Tv, Ts), ms, &(x[0]));
|
Chris@10
|
87 Tp = VFMA(LDK(KP707106781), Tm, Tl);
|
Chris@10
|
88 Tn = VFNMS(LDK(KP707106781), Tm, Tl);
|
Chris@10
|
89 To = VFMA(LDK(KP707106781), Tf, T4);
|
Chris@10
|
90 Tg = VFNMS(LDK(KP707106781), Tf, T4);
|
Chris@10
|
91 ST(&(x[WS(rs, 1)]), VFMAI(Tp, To), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
92 ST(&(x[WS(rs, 7)]), VFNMSI(Tp, To), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
93 ST(&(x[WS(rs, 5)]), VFMAI(Tn, Tg), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
94 ST(&(x[WS(rs, 3)]), VFNMSI(Tn, Tg), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
95 }
|
Chris@10
|
96 }
|
Chris@10
|
97 }
|
Chris@10
|
98 }
|
Chris@10
|
99 }
|
Chris@10
|
100 }
|
Chris@10
|
101 VLEAVE();
|
Chris@10
|
102 }
|
Chris@10
|
103
|
Chris@10
|
104 static const tw_instr twinstr[] = {
|
Chris@10
|
105 VTW(0, 1),
|
Chris@10
|
106 VTW(0, 2),
|
Chris@10
|
107 VTW(0, 3),
|
Chris@10
|
108 VTW(0, 4),
|
Chris@10
|
109 VTW(0, 5),
|
Chris@10
|
110 VTW(0, 6),
|
Chris@10
|
111 VTW(0, 7),
|
Chris@10
|
112 {TW_NEXT, VL, 0}
|
Chris@10
|
113 };
|
Chris@10
|
114
|
Chris@10
|
115 static const ct_desc desc = { 8, XSIMD_STRING("t1bv_8"), twinstr, &GENUS, {23, 14, 10, 0}, 0, 0, 0 };
|
Chris@10
|
116
|
Chris@10
|
117 void XSIMD(codelet_t1bv_8) (planner *p) {
|
Chris@10
|
118 X(kdft_dit_register) (p, t1bv_8, &desc);
|
Chris@10
|
119 }
|
Chris@10
|
120 #else /* HAVE_FMA */
|
Chris@10
|
121
|
Chris@10
|
122 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1bv_8 -include t1b.h -sign 1 */
|
Chris@10
|
123
|
Chris@10
|
124 /*
|
Chris@10
|
125 * This function contains 33 FP additions, 16 FP multiplications,
|
Chris@10
|
126 * (or, 33 additions, 16 multiplications, 0 fused multiply/add),
|
Chris@10
|
127 * 24 stack variables, 1 constants, and 16 memory accesses
|
Chris@10
|
128 */
|
Chris@10
|
129 #include "t1b.h"
|
Chris@10
|
130
|
Chris@10
|
131 static void t1bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
132 {
|
Chris@10
|
133 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
134 {
|
Chris@10
|
135 INT m;
|
Chris@10
|
136 R *x;
|
Chris@10
|
137 x = ii;
|
Chris@10
|
138 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
|
Chris@10
|
139 V Tl, Tq, Tg, Tr, T5, Tt, Ta, Tu, Ti, Tk, Tj;
|
Chris@10
|
140 Ti = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
141 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
142 Tk = BYTW(&(W[TWVL * 6]), Tj);
|
Chris@10
|
143 Tl = VSUB(Ti, Tk);
|
Chris@10
|
144 Tq = VADD(Ti, Tk);
|
Chris@10
|
145 {
|
Chris@10
|
146 V Td, Tf, Tc, Te;
|
Chris@10
|
147 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
148 Td = BYTW(&(W[TWVL * 2]), Tc);
|
Chris@10
|
149 Te = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
150 Tf = BYTW(&(W[TWVL * 10]), Te);
|
Chris@10
|
151 Tg = VSUB(Td, Tf);
|
Chris@10
|
152 Tr = VADD(Td, Tf);
|
Chris@10
|
153 }
|
Chris@10
|
154 {
|
Chris@10
|
155 V T2, T4, T1, T3;
|
Chris@10
|
156 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
157 T2 = BYTW(&(W[0]), T1);
|
Chris@10
|
158 T3 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
159 T4 = BYTW(&(W[TWVL * 8]), T3);
|
Chris@10
|
160 T5 = VSUB(T2, T4);
|
Chris@10
|
161 Tt = VADD(T2, T4);
|
Chris@10
|
162 }
|
Chris@10
|
163 {
|
Chris@10
|
164 V T7, T9, T6, T8;
|
Chris@10
|
165 T6 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
166 T7 = BYTW(&(W[TWVL * 12]), T6);
|
Chris@10
|
167 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
168 T9 = BYTW(&(W[TWVL * 4]), T8);
|
Chris@10
|
169 Ta = VSUB(T7, T9);
|
Chris@10
|
170 Tu = VADD(T7, T9);
|
Chris@10
|
171 }
|
Chris@10
|
172 {
|
Chris@10
|
173 V Ts, Tv, Tw, Tx;
|
Chris@10
|
174 Ts = VSUB(Tq, Tr);
|
Chris@10
|
175 Tv = VBYI(VSUB(Tt, Tu));
|
Chris@10
|
176 ST(&(x[WS(rs, 6)]), VSUB(Ts, Tv), ms, &(x[0]));
|
Chris@10
|
177 ST(&(x[WS(rs, 2)]), VADD(Ts, Tv), ms, &(x[0]));
|
Chris@10
|
178 Tw = VADD(Tq, Tr);
|
Chris@10
|
179 Tx = VADD(Tt, Tu);
|
Chris@10
|
180 ST(&(x[WS(rs, 4)]), VSUB(Tw, Tx), ms, &(x[0]));
|
Chris@10
|
181 ST(&(x[0]), VADD(Tw, Tx), ms, &(x[0]));
|
Chris@10
|
182 {
|
Chris@10
|
183 V Th, To, Tn, Tp, Tb, Tm;
|
Chris@10
|
184 Tb = VMUL(LDK(KP707106781), VSUB(T5, Ta));
|
Chris@10
|
185 Th = VBYI(VSUB(Tb, Tg));
|
Chris@10
|
186 To = VBYI(VADD(Tg, Tb));
|
Chris@10
|
187 Tm = VMUL(LDK(KP707106781), VADD(T5, Ta));
|
Chris@10
|
188 Tn = VSUB(Tl, Tm);
|
Chris@10
|
189 Tp = VADD(Tl, Tm);
|
Chris@10
|
190 ST(&(x[WS(rs, 3)]), VADD(Th, Tn), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
191 ST(&(x[WS(rs, 7)]), VSUB(Tp, To), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
192 ST(&(x[WS(rs, 5)]), VSUB(Tn, Th), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
193 ST(&(x[WS(rs, 1)]), VADD(To, Tp), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
194 }
|
Chris@10
|
195 }
|
Chris@10
|
196 }
|
Chris@10
|
197 }
|
Chris@10
|
198 VLEAVE();
|
Chris@10
|
199 }
|
Chris@10
|
200
|
Chris@10
|
201 static const tw_instr twinstr[] = {
|
Chris@10
|
202 VTW(0, 1),
|
Chris@10
|
203 VTW(0, 2),
|
Chris@10
|
204 VTW(0, 3),
|
Chris@10
|
205 VTW(0, 4),
|
Chris@10
|
206 VTW(0, 5),
|
Chris@10
|
207 VTW(0, 6),
|
Chris@10
|
208 VTW(0, 7),
|
Chris@10
|
209 {TW_NEXT, VL, 0}
|
Chris@10
|
210 };
|
Chris@10
|
211
|
Chris@10
|
212 static const ct_desc desc = { 8, XSIMD_STRING("t1bv_8"), twinstr, &GENUS, {33, 16, 0, 0}, 0, 0, 0 };
|
Chris@10
|
213
|
Chris@10
|
214 void XSIMD(codelet_t1bv_8) (planner *p) {
|
Chris@10
|
215 X(kdft_dit_register) (p, t1bv_8, &desc);
|
Chris@10
|
216 }
|
Chris@10
|
217 #endif /* HAVE_FMA */
|