annotate src/fftw-3.3.3/dft/simd/common/t1bv_15.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:39:04 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1bv_15 -include t1b.h -sign 1 */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 92 FP additions, 77 FP multiplications,
Chris@10 32 * (or, 50 additions, 35 multiplications, 42 fused multiply/add),
Chris@10 33 * 81 stack variables, 8 constants, and 30 memory accesses
Chris@10 34 */
Chris@10 35 #include "t1b.h"
Chris@10 36
Chris@10 37 static void t1bv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
Chris@10 40 DVK(KP910592997, +0.910592997310029334643087372129977886038870291);
Chris@10 41 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 43 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 44 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 45 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 46 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 47 {
Chris@10 48 INT m;
Chris@10 49 R *x;
Chris@10 50 x = ii;
Chris@10 51 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) {
Chris@10 52 V Tq, Ty, Th, TV, TK, Ts, T1f, T7, Tu, TA, TC, Tj, Tk, T1g, Tf;
Chris@10 53 {
Chris@10 54 V T1, T4, T2, T9, Te;
Chris@10 55 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 56 T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
Chris@10 57 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 58 {
Chris@10 59 V T8, Tp, Tx, Tg;
Chris@10 60 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 61 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 62 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Chris@10 63 Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
Chris@10 64 {
Chris@10 65 V Tb, Td, Tr, T6, Tt, Tz, TB, Ti;
Chris@10 66 {
Chris@10 67 V T5, T3, Ta, Tc;
Chris@10 68 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@10 69 Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
Chris@10 70 T5 = BYTW(&(W[TWVL * 18]), T4);
Chris@10 71 T3 = BYTW(&(W[TWVL * 8]), T2);
Chris@10 72 T9 = BYTW(&(W[TWVL * 4]), T8);
Chris@10 73 Tq = BYTW(&(W[TWVL * 10]), Tp);
Chris@10 74 Ty = BYTW(&(W[TWVL * 16]), Tx);
Chris@10 75 Th = BYTW(&(W[TWVL * 22]), Tg);
Chris@10 76 Tb = BYTW(&(W[TWVL * 14]), Ta);
Chris@10 77 Td = BYTW(&(W[TWVL * 24]), Tc);
Chris@10 78 Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
Chris@10 79 TV = VSUB(T3, T5);
Chris@10 80 T6 = VADD(T3, T5);
Chris@10 81 Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 82 }
Chris@10 83 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
Chris@10 84 TB = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 85 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 86 Te = VADD(Tb, Td);
Chris@10 87 TK = VSUB(Tb, Td);
Chris@10 88 Ts = BYTW(&(W[TWVL * 20]), Tr);
Chris@10 89 T1f = VADD(T1, T6);
Chris@10 90 T7 = VFNMS(LDK(KP500000000), T6, T1);
Chris@10 91 Tu = BYTW(&(W[0]), Tt);
Chris@10 92 TA = BYTW(&(W[TWVL * 26]), Tz);
Chris@10 93 TC = BYTW(&(W[TWVL * 6]), TB);
Chris@10 94 Tj = BYTW(&(W[TWVL * 2]), Ti);
Chris@10 95 Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@10 96 }
Chris@10 97 }
Chris@10 98 T1g = VADD(T9, Te);
Chris@10 99 Tf = VFNMS(LDK(KP500000000), Te, T9);
Chris@10 100 }
Chris@10 101 {
Chris@10 102 V Tv, TN, TD, TO, Tl;
Chris@10 103 Tv = VADD(Ts, Tu);
Chris@10 104 TN = VSUB(Ts, Tu);
Chris@10 105 TD = VADD(TA, TC);
Chris@10 106 TO = VSUB(TA, TC);
Chris@10 107 Tl = BYTW(&(W[TWVL * 12]), Tk);
Chris@10 108 {
Chris@10 109 V Tw, T1j, TX, TP, TE, T1k, TL, Tm;
Chris@10 110 Tw = VFNMS(LDK(KP500000000), Tv, Tq);
Chris@10 111 T1j = VADD(Tq, Tv);
Chris@10 112 TX = VADD(TN, TO);
Chris@10 113 TP = VSUB(TN, TO);
Chris@10 114 TE = VFNMS(LDK(KP500000000), TD, Ty);
Chris@10 115 T1k = VADD(Ty, TD);
Chris@10 116 TL = VSUB(Tj, Tl);
Chris@10 117 Tm = VADD(Tj, Tl);
Chris@10 118 {
Chris@10 119 V TT, TF, T1q, T1l, TW, TM, T1h, Tn;
Chris@10 120 TT = VSUB(Tw, TE);
Chris@10 121 TF = VADD(Tw, TE);
Chris@10 122 T1q = VSUB(T1j, T1k);
Chris@10 123 T1l = VADD(T1j, T1k);
Chris@10 124 TW = VADD(TK, TL);
Chris@10 125 TM = VSUB(TK, TL);
Chris@10 126 T1h = VADD(Th, Tm);
Chris@10 127 Tn = VFNMS(LDK(KP500000000), Tm, Th);
Chris@10 128 {
Chris@10 129 V T10, TY, T16, TQ, T1r, T1i, TS, To, TZ, T1e;
Chris@10 130 T10 = VSUB(TW, TX);
Chris@10 131 TY = VADD(TW, TX);
Chris@10 132 T16 = VFNMS(LDK(KP618033988), TM, TP);
Chris@10 133 TQ = VFMA(LDK(KP618033988), TP, TM);
Chris@10 134 T1r = VSUB(T1g, T1h);
Chris@10 135 T1i = VADD(T1g, T1h);
Chris@10 136 TS = VSUB(Tf, Tn);
Chris@10 137 To = VADD(Tf, Tn);
Chris@10 138 TZ = VFNMS(LDK(KP250000000), TY, TV);
Chris@10 139 T1e = VMUL(LDK(KP866025403), VADD(TV, TY));
Chris@10 140 {
Chris@10 141 V T1u, T1s, T1o, T18, TU, TG, TI, T19, T11, T1n, T1m;
Chris@10 142 T1u = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1q, T1r));
Chris@10 143 T1s = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1r, T1q));
Chris@10 144 T1m = VADD(T1i, T1l);
Chris@10 145 T1o = VSUB(T1i, T1l);
Chris@10 146 T18 = VFNMS(LDK(KP618033988), TS, TT);
Chris@10 147 TU = VFMA(LDK(KP618033988), TT, TS);
Chris@10 148 TG = VADD(To, TF);
Chris@10 149 TI = VSUB(To, TF);
Chris@10 150 T19 = VFNMS(LDK(KP559016994), T10, TZ);
Chris@10 151 T11 = VFMA(LDK(KP559016994), T10, TZ);
Chris@10 152 ST(&(x[0]), VADD(T1f, T1m), ms, &(x[0]));
Chris@10 153 T1n = VFNMS(LDK(KP250000000), T1m, T1f);
Chris@10 154 {
Chris@10 155 V T1a, T1c, T14, T12, T1p, T1t, T15, TJ, T1d, TH;
Chris@10 156 T1d = VADD(T7, TG);
Chris@10 157 TH = VFNMS(LDK(KP250000000), TG, T7);
Chris@10 158 T1a = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T19, T18));
Chris@10 159 T1c = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T19, T18));
Chris@10 160 T14 = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T11, TU));
Chris@10 161 T12 = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T11, TU));
Chris@10 162 T1p = VFNMS(LDK(KP559016994), T1o, T1n);
Chris@10 163 T1t = VFMA(LDK(KP559016994), T1o, T1n);
Chris@10 164 ST(&(x[WS(rs, 10)]), VFMAI(T1e, T1d), ms, &(x[0]));
Chris@10 165 ST(&(x[WS(rs, 5)]), VFNMSI(T1e, T1d), ms, &(x[WS(rs, 1)]));
Chris@10 166 T15 = VFNMS(LDK(KP559016994), TI, TH);
Chris@10 167 TJ = VFMA(LDK(KP559016994), TI, TH);
Chris@10 168 {
Chris@10 169 V T17, T1b, T13, TR;
Chris@10 170 ST(&(x[WS(rs, 12)]), VFNMSI(T1s, T1p), ms, &(x[0]));
Chris@10 171 ST(&(x[WS(rs, 3)]), VFMAI(T1s, T1p), ms, &(x[WS(rs, 1)]));
Chris@10 172 ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)]));
Chris@10 173 ST(&(x[WS(rs, 6)]), VFMAI(T1u, T1t), ms, &(x[0]));
Chris@10 174 T17 = VFNMS(LDK(KP823639103), T16, T15);
Chris@10 175 T1b = VFMA(LDK(KP823639103), T16, T15);
Chris@10 176 T13 = VFMA(LDK(KP823639103), TQ, TJ);
Chris@10 177 TR = VFNMS(LDK(KP823639103), TQ, TJ);
Chris@10 178 ST(&(x[WS(rs, 13)]), VFMAI(T1a, T17), ms, &(x[WS(rs, 1)]));
Chris@10 179 ST(&(x[WS(rs, 2)]), VFNMSI(T1a, T17), ms, &(x[0]));
Chris@10 180 ST(&(x[WS(rs, 8)]), VFMAI(T1c, T1b), ms, &(x[0]));
Chris@10 181 ST(&(x[WS(rs, 7)]), VFNMSI(T1c, T1b), ms, &(x[WS(rs, 1)]));
Chris@10 182 ST(&(x[WS(rs, 11)]), VFMAI(T14, T13), ms, &(x[WS(rs, 1)]));
Chris@10 183 ST(&(x[WS(rs, 4)]), VFNMSI(T14, T13), ms, &(x[0]));
Chris@10 184 ST(&(x[WS(rs, 14)]), VFNMSI(T12, TR), ms, &(x[0]));
Chris@10 185 ST(&(x[WS(rs, 1)]), VFMAI(T12, TR), ms, &(x[WS(rs, 1)]));
Chris@10 186 }
Chris@10 187 }
Chris@10 188 }
Chris@10 189 }
Chris@10 190 }
Chris@10 191 }
Chris@10 192 }
Chris@10 193 }
Chris@10 194 }
Chris@10 195 VLEAVE();
Chris@10 196 }
Chris@10 197
Chris@10 198 static const tw_instr twinstr[] = {
Chris@10 199 VTW(0, 1),
Chris@10 200 VTW(0, 2),
Chris@10 201 VTW(0, 3),
Chris@10 202 VTW(0, 4),
Chris@10 203 VTW(0, 5),
Chris@10 204 VTW(0, 6),
Chris@10 205 VTW(0, 7),
Chris@10 206 VTW(0, 8),
Chris@10 207 VTW(0, 9),
Chris@10 208 VTW(0, 10),
Chris@10 209 VTW(0, 11),
Chris@10 210 VTW(0, 12),
Chris@10 211 VTW(0, 13),
Chris@10 212 VTW(0, 14),
Chris@10 213 {TW_NEXT, VL, 0}
Chris@10 214 };
Chris@10 215
Chris@10 216 static const ct_desc desc = { 15, XSIMD_STRING("t1bv_15"), twinstr, &GENUS, {50, 35, 42, 0}, 0, 0, 0 };
Chris@10 217
Chris@10 218 void XSIMD(codelet_t1bv_15) (planner *p) {
Chris@10 219 X(kdft_dit_register) (p, t1bv_15, &desc);
Chris@10 220 }
Chris@10 221 #else /* HAVE_FMA */
Chris@10 222
Chris@10 223 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1bv_15 -include t1b.h -sign 1 */
Chris@10 224
Chris@10 225 /*
Chris@10 226 * This function contains 92 FP additions, 53 FP multiplications,
Chris@10 227 * (or, 78 additions, 39 multiplications, 14 fused multiply/add),
Chris@10 228 * 52 stack variables, 10 constants, and 30 memory accesses
Chris@10 229 */
Chris@10 230 #include "t1b.h"
Chris@10 231
Chris@10 232 static void t1bv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 233 {
Chris@10 234 DVK(KP216506350, +0.216506350946109661690930792688234045867850657);
Chris@10 235 DVK(KP484122918, +0.484122918275927110647408174972799951354115213);
Chris@10 236 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 237 DVK(KP509036960, +0.509036960455127183450980863393907648510733164);
Chris@10 238 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
Chris@10 239 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 240 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 241 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 242 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 243 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 244 {
Chris@10 245 INT m;
Chris@10 246 R *x;
Chris@10 247 x = ii;
Chris@10 248 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) {
Chris@10 249 V Ts, TV, T1f, TZ, T10, Tb, Tm, Tt, T1j, T1k, T1l, TI, TM, TR, Tz;
Chris@10 250 V TD, TQ, T1g, T1h, T1i;
Chris@10 251 {
Chris@10 252 V TT, Tr, Tp, Tq, To, TU;
Chris@10 253 TT = LD(&(x[0]), ms, &(x[0]));
Chris@10 254 Tq = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
Chris@10 255 Tr = BYTW(&(W[TWVL * 18]), Tq);
Chris@10 256 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 257 Tp = BYTW(&(W[TWVL * 8]), To);
Chris@10 258 Ts = VSUB(Tp, Tr);
Chris@10 259 TU = VADD(Tp, Tr);
Chris@10 260 TV = VFNMS(LDK(KP500000000), TU, TT);
Chris@10 261 T1f = VADD(TT, TU);
Chris@10 262 }
Chris@10 263 {
Chris@10 264 V Tx, TG, TK, TB, T5, Ty, Tg, TH, Tl, TL, Ta, TC;
Chris@10 265 {
Chris@10 266 V Tw, TF, TJ, TA;
Chris@10 267 Tw = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 268 Tx = BYTW(&(W[TWVL * 4]), Tw);
Chris@10 269 TF = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 270 TG = BYTW(&(W[TWVL * 10]), TF);
Chris@10 271 TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Chris@10 272 TK = BYTW(&(W[TWVL * 16]), TJ);
Chris@10 273 TA = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
Chris@10 274 TB = BYTW(&(W[TWVL * 22]), TA);
Chris@10 275 }
Chris@10 276 {
Chris@10 277 V T2, T4, T1, T3;
Chris@10 278 T1 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@10 279 T2 = BYTW(&(W[TWVL * 14]), T1);
Chris@10 280 T3 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
Chris@10 281 T4 = BYTW(&(W[TWVL * 24]), T3);
Chris@10 282 T5 = VSUB(T2, T4);
Chris@10 283 Ty = VADD(T2, T4);
Chris@10 284 }
Chris@10 285 {
Chris@10 286 V Td, Tf, Tc, Te;
Chris@10 287 Tc = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
Chris@10 288 Td = BYTW(&(W[TWVL * 20]), Tc);
Chris@10 289 Te = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 290 Tf = BYTW(&(W[0]), Te);
Chris@10 291 Tg = VSUB(Td, Tf);
Chris@10 292 TH = VADD(Td, Tf);
Chris@10 293 }
Chris@10 294 {
Chris@10 295 V Ti, Tk, Th, Tj;
Chris@10 296 Th = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
Chris@10 297 Ti = BYTW(&(W[TWVL * 26]), Th);
Chris@10 298 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 299 Tk = BYTW(&(W[TWVL * 6]), Tj);
Chris@10 300 Tl = VSUB(Ti, Tk);
Chris@10 301 TL = VADD(Ti, Tk);
Chris@10 302 }
Chris@10 303 {
Chris@10 304 V T7, T9, T6, T8;
Chris@10 305 T6 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 306 T7 = BYTW(&(W[TWVL * 2]), T6);
Chris@10 307 T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@10 308 T9 = BYTW(&(W[TWVL * 12]), T8);
Chris@10 309 Ta = VSUB(T7, T9);
Chris@10 310 TC = VADD(T7, T9);
Chris@10 311 }
Chris@10 312 TZ = VSUB(T5, Ta);
Chris@10 313 T10 = VSUB(Tg, Tl);
Chris@10 314 Tb = VADD(T5, Ta);
Chris@10 315 Tm = VADD(Tg, Tl);
Chris@10 316 Tt = VADD(Tb, Tm);
Chris@10 317 T1j = VADD(TG, TH);
Chris@10 318 T1k = VADD(TK, TL);
Chris@10 319 T1l = VADD(T1j, T1k);
Chris@10 320 TI = VFNMS(LDK(KP500000000), TH, TG);
Chris@10 321 TM = VFNMS(LDK(KP500000000), TL, TK);
Chris@10 322 TR = VADD(TI, TM);
Chris@10 323 Tz = VFNMS(LDK(KP500000000), Ty, Tx);
Chris@10 324 TD = VFNMS(LDK(KP500000000), TC, TB);
Chris@10 325 TQ = VADD(Tz, TD);
Chris@10 326 T1g = VADD(Tx, Ty);
Chris@10 327 T1h = VADD(TB, TC);
Chris@10 328 T1i = VADD(T1g, T1h);
Chris@10 329 }
Chris@10 330 {
Chris@10 331 V T1o, T1m, T1n, T1s, T1t, T1q, T1r, T1u, T1p;
Chris@10 332 T1o = VMUL(LDK(KP559016994), VSUB(T1i, T1l));
Chris@10 333 T1m = VADD(T1i, T1l);
Chris@10 334 T1n = VFNMS(LDK(KP250000000), T1m, T1f);
Chris@10 335 T1q = VSUB(T1g, T1h);
Chris@10 336 T1r = VSUB(T1j, T1k);
Chris@10 337 T1s = VBYI(VFNMS(LDK(KP951056516), T1r, VMUL(LDK(KP587785252), T1q)));
Chris@10 338 T1t = VBYI(VFMA(LDK(KP951056516), T1q, VMUL(LDK(KP587785252), T1r)));
Chris@10 339 ST(&(x[0]), VADD(T1f, T1m), ms, &(x[0]));
Chris@10 340 T1u = VADD(T1o, T1n);
Chris@10 341 ST(&(x[WS(rs, 6)]), VADD(T1t, T1u), ms, &(x[0]));
Chris@10 342 ST(&(x[WS(rs, 9)]), VSUB(T1u, T1t), ms, &(x[WS(rs, 1)]));
Chris@10 343 T1p = VSUB(T1n, T1o);
Chris@10 344 ST(&(x[WS(rs, 3)]), VSUB(T1p, T1s), ms, &(x[WS(rs, 1)]));
Chris@10 345 ST(&(x[WS(rs, 12)]), VADD(T1s, T1p), ms, &(x[0]));
Chris@10 346 }
Chris@10 347 {
Chris@10 348 V T11, T18, T1e, TO, T16, Tv, T15, TY, T1d, T19, TE, TN;
Chris@10 349 T11 = VFMA(LDK(KP823639103), TZ, VMUL(LDK(KP509036960), T10));
Chris@10 350 T18 = VFNMS(LDK(KP823639103), T10, VMUL(LDK(KP509036960), TZ));
Chris@10 351 T1e = VBYI(VMUL(LDK(KP866025403), VADD(Ts, Tt)));
Chris@10 352 TE = VSUB(Tz, TD);
Chris@10 353 TN = VSUB(TI, TM);
Chris@10 354 TO = VFMA(LDK(KP951056516), TE, VMUL(LDK(KP587785252), TN));
Chris@10 355 T16 = VFNMS(LDK(KP951056516), TN, VMUL(LDK(KP587785252), TE));
Chris@10 356 {
Chris@10 357 V Tn, Tu, TS, TW, TX;
Chris@10 358 Tn = VMUL(LDK(KP484122918), VSUB(Tb, Tm));
Chris@10 359 Tu = VFNMS(LDK(KP216506350), Tt, VMUL(LDK(KP866025403), Ts));
Chris@10 360 Tv = VADD(Tn, Tu);
Chris@10 361 T15 = VSUB(Tn, Tu);
Chris@10 362 TS = VMUL(LDK(KP559016994), VSUB(TQ, TR));
Chris@10 363 TW = VADD(TQ, TR);
Chris@10 364 TX = VFNMS(LDK(KP250000000), TW, TV);
Chris@10 365 TY = VADD(TS, TX);
Chris@10 366 T1d = VADD(TV, TW);
Chris@10 367 T19 = VSUB(TX, TS);
Chris@10 368 }
Chris@10 369 {
Chris@10 370 V TP, T12, T1b, T1c;
Chris@10 371 ST(&(x[WS(rs, 5)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)]));
Chris@10 372 ST(&(x[WS(rs, 10)]), VADD(T1e, T1d), ms, &(x[0]));
Chris@10 373 TP = VBYI(VADD(Tv, TO));
Chris@10 374 T12 = VSUB(TY, T11);
Chris@10 375 ST(&(x[WS(rs, 1)]), VADD(TP, T12), ms, &(x[WS(rs, 1)]));
Chris@10 376 ST(&(x[WS(rs, 14)]), VSUB(T12, TP), ms, &(x[0]));
Chris@10 377 T1b = VBYI(VSUB(T16, T15));
Chris@10 378 T1c = VSUB(T19, T18);
Chris@10 379 ST(&(x[WS(rs, 7)]), VADD(T1b, T1c), ms, &(x[WS(rs, 1)]));
Chris@10 380 ST(&(x[WS(rs, 8)]), VSUB(T1c, T1b), ms, &(x[0]));
Chris@10 381 {
Chris@10 382 V T17, T1a, T13, T14;
Chris@10 383 T17 = VBYI(VADD(T15, T16));
Chris@10 384 T1a = VADD(T18, T19);
Chris@10 385 ST(&(x[WS(rs, 2)]), VADD(T17, T1a), ms, &(x[0]));
Chris@10 386 ST(&(x[WS(rs, 13)]), VSUB(T1a, T17), ms, &(x[WS(rs, 1)]));
Chris@10 387 T13 = VBYI(VSUB(Tv, TO));
Chris@10 388 T14 = VADD(T11, TY);
Chris@10 389 ST(&(x[WS(rs, 4)]), VADD(T13, T14), ms, &(x[0]));
Chris@10 390 ST(&(x[WS(rs, 11)]), VSUB(T14, T13), ms, &(x[WS(rs, 1)]));
Chris@10 391 }
Chris@10 392 }
Chris@10 393 }
Chris@10 394 }
Chris@10 395 }
Chris@10 396 VLEAVE();
Chris@10 397 }
Chris@10 398
Chris@10 399 static const tw_instr twinstr[] = {
Chris@10 400 VTW(0, 1),
Chris@10 401 VTW(0, 2),
Chris@10 402 VTW(0, 3),
Chris@10 403 VTW(0, 4),
Chris@10 404 VTW(0, 5),
Chris@10 405 VTW(0, 6),
Chris@10 406 VTW(0, 7),
Chris@10 407 VTW(0, 8),
Chris@10 408 VTW(0, 9),
Chris@10 409 VTW(0, 10),
Chris@10 410 VTW(0, 11),
Chris@10 411 VTW(0, 12),
Chris@10 412 VTW(0, 13),
Chris@10 413 VTW(0, 14),
Chris@10 414 {TW_NEXT, VL, 0}
Chris@10 415 };
Chris@10 416
Chris@10 417 static const ct_desc desc = { 15, XSIMD_STRING("t1bv_15"), twinstr, &GENUS, {78, 39, 14, 0}, 0, 0, 0 };
Chris@10 418
Chris@10 419 void XSIMD(codelet_t1bv_15) (planner *p) {
Chris@10 420 X(kdft_dit_register) (p, t1bv_15, &desc);
Chris@10 421 }
Chris@10 422 #endif /* HAVE_FMA */