Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:39:04 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1bv_15 -include t1b.h -sign 1 */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 92 FP additions, 77 FP multiplications,
|
Chris@10
|
32 * (or, 50 additions, 35 multiplications, 42 fused multiply/add),
|
Chris@10
|
33 * 81 stack variables, 8 constants, and 30 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "t1b.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t1bv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
|
Chris@10
|
40 DVK(KP910592997, +0.910592997310029334643087372129977886038870291);
|
Chris@10
|
41 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
43 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
44 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
45 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
46 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
47 {
|
Chris@10
|
48 INT m;
|
Chris@10
|
49 R *x;
|
Chris@10
|
50 x = ii;
|
Chris@10
|
51 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) {
|
Chris@10
|
52 V Tq, Ty, Th, TV, TK, Ts, T1f, T7, Tu, TA, TC, Tj, Tk, T1g, Tf;
|
Chris@10
|
53 {
|
Chris@10
|
54 V T1, T4, T2, T9, Te;
|
Chris@10
|
55 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
56 T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
57 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
58 {
|
Chris@10
|
59 V T8, Tp, Tx, Tg;
|
Chris@10
|
60 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
61 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
62 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
63 Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
Chris@10
|
64 {
|
Chris@10
|
65 V Tb, Td, Tr, T6, Tt, Tz, TB, Ti;
|
Chris@10
|
66 {
|
Chris@10
|
67 V T5, T3, Ta, Tc;
|
Chris@10
|
68 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
69 Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
70 T5 = BYTW(&(W[TWVL * 18]), T4);
|
Chris@10
|
71 T3 = BYTW(&(W[TWVL * 8]), T2);
|
Chris@10
|
72 T9 = BYTW(&(W[TWVL * 4]), T8);
|
Chris@10
|
73 Tq = BYTW(&(W[TWVL * 10]), Tp);
|
Chris@10
|
74 Ty = BYTW(&(W[TWVL * 16]), Tx);
|
Chris@10
|
75 Th = BYTW(&(W[TWVL * 22]), Tg);
|
Chris@10
|
76 Tb = BYTW(&(W[TWVL * 14]), Ta);
|
Chris@10
|
77 Td = BYTW(&(W[TWVL * 24]), Tc);
|
Chris@10
|
78 Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
79 TV = VSUB(T3, T5);
|
Chris@10
|
80 T6 = VADD(T3, T5);
|
Chris@10
|
81 Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
82 }
|
Chris@10
|
83 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
Chris@10
|
84 TB = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
85 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
86 Te = VADD(Tb, Td);
|
Chris@10
|
87 TK = VSUB(Tb, Td);
|
Chris@10
|
88 Ts = BYTW(&(W[TWVL * 20]), Tr);
|
Chris@10
|
89 T1f = VADD(T1, T6);
|
Chris@10
|
90 T7 = VFNMS(LDK(KP500000000), T6, T1);
|
Chris@10
|
91 Tu = BYTW(&(W[0]), Tt);
|
Chris@10
|
92 TA = BYTW(&(W[TWVL * 26]), Tz);
|
Chris@10
|
93 TC = BYTW(&(W[TWVL * 6]), TB);
|
Chris@10
|
94 Tj = BYTW(&(W[TWVL * 2]), Ti);
|
Chris@10
|
95 Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
96 }
|
Chris@10
|
97 }
|
Chris@10
|
98 T1g = VADD(T9, Te);
|
Chris@10
|
99 Tf = VFNMS(LDK(KP500000000), Te, T9);
|
Chris@10
|
100 }
|
Chris@10
|
101 {
|
Chris@10
|
102 V Tv, TN, TD, TO, Tl;
|
Chris@10
|
103 Tv = VADD(Ts, Tu);
|
Chris@10
|
104 TN = VSUB(Ts, Tu);
|
Chris@10
|
105 TD = VADD(TA, TC);
|
Chris@10
|
106 TO = VSUB(TA, TC);
|
Chris@10
|
107 Tl = BYTW(&(W[TWVL * 12]), Tk);
|
Chris@10
|
108 {
|
Chris@10
|
109 V Tw, T1j, TX, TP, TE, T1k, TL, Tm;
|
Chris@10
|
110 Tw = VFNMS(LDK(KP500000000), Tv, Tq);
|
Chris@10
|
111 T1j = VADD(Tq, Tv);
|
Chris@10
|
112 TX = VADD(TN, TO);
|
Chris@10
|
113 TP = VSUB(TN, TO);
|
Chris@10
|
114 TE = VFNMS(LDK(KP500000000), TD, Ty);
|
Chris@10
|
115 T1k = VADD(Ty, TD);
|
Chris@10
|
116 TL = VSUB(Tj, Tl);
|
Chris@10
|
117 Tm = VADD(Tj, Tl);
|
Chris@10
|
118 {
|
Chris@10
|
119 V TT, TF, T1q, T1l, TW, TM, T1h, Tn;
|
Chris@10
|
120 TT = VSUB(Tw, TE);
|
Chris@10
|
121 TF = VADD(Tw, TE);
|
Chris@10
|
122 T1q = VSUB(T1j, T1k);
|
Chris@10
|
123 T1l = VADD(T1j, T1k);
|
Chris@10
|
124 TW = VADD(TK, TL);
|
Chris@10
|
125 TM = VSUB(TK, TL);
|
Chris@10
|
126 T1h = VADD(Th, Tm);
|
Chris@10
|
127 Tn = VFNMS(LDK(KP500000000), Tm, Th);
|
Chris@10
|
128 {
|
Chris@10
|
129 V T10, TY, T16, TQ, T1r, T1i, TS, To, TZ, T1e;
|
Chris@10
|
130 T10 = VSUB(TW, TX);
|
Chris@10
|
131 TY = VADD(TW, TX);
|
Chris@10
|
132 T16 = VFNMS(LDK(KP618033988), TM, TP);
|
Chris@10
|
133 TQ = VFMA(LDK(KP618033988), TP, TM);
|
Chris@10
|
134 T1r = VSUB(T1g, T1h);
|
Chris@10
|
135 T1i = VADD(T1g, T1h);
|
Chris@10
|
136 TS = VSUB(Tf, Tn);
|
Chris@10
|
137 To = VADD(Tf, Tn);
|
Chris@10
|
138 TZ = VFNMS(LDK(KP250000000), TY, TV);
|
Chris@10
|
139 T1e = VMUL(LDK(KP866025403), VADD(TV, TY));
|
Chris@10
|
140 {
|
Chris@10
|
141 V T1u, T1s, T1o, T18, TU, TG, TI, T19, T11, T1n, T1m;
|
Chris@10
|
142 T1u = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1q, T1r));
|
Chris@10
|
143 T1s = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1r, T1q));
|
Chris@10
|
144 T1m = VADD(T1i, T1l);
|
Chris@10
|
145 T1o = VSUB(T1i, T1l);
|
Chris@10
|
146 T18 = VFNMS(LDK(KP618033988), TS, TT);
|
Chris@10
|
147 TU = VFMA(LDK(KP618033988), TT, TS);
|
Chris@10
|
148 TG = VADD(To, TF);
|
Chris@10
|
149 TI = VSUB(To, TF);
|
Chris@10
|
150 T19 = VFNMS(LDK(KP559016994), T10, TZ);
|
Chris@10
|
151 T11 = VFMA(LDK(KP559016994), T10, TZ);
|
Chris@10
|
152 ST(&(x[0]), VADD(T1f, T1m), ms, &(x[0]));
|
Chris@10
|
153 T1n = VFNMS(LDK(KP250000000), T1m, T1f);
|
Chris@10
|
154 {
|
Chris@10
|
155 V T1a, T1c, T14, T12, T1p, T1t, T15, TJ, T1d, TH;
|
Chris@10
|
156 T1d = VADD(T7, TG);
|
Chris@10
|
157 TH = VFNMS(LDK(KP250000000), TG, T7);
|
Chris@10
|
158 T1a = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T19, T18));
|
Chris@10
|
159 T1c = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T19, T18));
|
Chris@10
|
160 T14 = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T11, TU));
|
Chris@10
|
161 T12 = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T11, TU));
|
Chris@10
|
162 T1p = VFNMS(LDK(KP559016994), T1o, T1n);
|
Chris@10
|
163 T1t = VFMA(LDK(KP559016994), T1o, T1n);
|
Chris@10
|
164 ST(&(x[WS(rs, 10)]), VFMAI(T1e, T1d), ms, &(x[0]));
|
Chris@10
|
165 ST(&(x[WS(rs, 5)]), VFNMSI(T1e, T1d), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
166 T15 = VFNMS(LDK(KP559016994), TI, TH);
|
Chris@10
|
167 TJ = VFMA(LDK(KP559016994), TI, TH);
|
Chris@10
|
168 {
|
Chris@10
|
169 V T17, T1b, T13, TR;
|
Chris@10
|
170 ST(&(x[WS(rs, 12)]), VFNMSI(T1s, T1p), ms, &(x[0]));
|
Chris@10
|
171 ST(&(x[WS(rs, 3)]), VFMAI(T1s, T1p), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
172 ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
173 ST(&(x[WS(rs, 6)]), VFMAI(T1u, T1t), ms, &(x[0]));
|
Chris@10
|
174 T17 = VFNMS(LDK(KP823639103), T16, T15);
|
Chris@10
|
175 T1b = VFMA(LDK(KP823639103), T16, T15);
|
Chris@10
|
176 T13 = VFMA(LDK(KP823639103), TQ, TJ);
|
Chris@10
|
177 TR = VFNMS(LDK(KP823639103), TQ, TJ);
|
Chris@10
|
178 ST(&(x[WS(rs, 13)]), VFMAI(T1a, T17), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
179 ST(&(x[WS(rs, 2)]), VFNMSI(T1a, T17), ms, &(x[0]));
|
Chris@10
|
180 ST(&(x[WS(rs, 8)]), VFMAI(T1c, T1b), ms, &(x[0]));
|
Chris@10
|
181 ST(&(x[WS(rs, 7)]), VFNMSI(T1c, T1b), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
182 ST(&(x[WS(rs, 11)]), VFMAI(T14, T13), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
183 ST(&(x[WS(rs, 4)]), VFNMSI(T14, T13), ms, &(x[0]));
|
Chris@10
|
184 ST(&(x[WS(rs, 14)]), VFNMSI(T12, TR), ms, &(x[0]));
|
Chris@10
|
185 ST(&(x[WS(rs, 1)]), VFMAI(T12, TR), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
186 }
|
Chris@10
|
187 }
|
Chris@10
|
188 }
|
Chris@10
|
189 }
|
Chris@10
|
190 }
|
Chris@10
|
191 }
|
Chris@10
|
192 }
|
Chris@10
|
193 }
|
Chris@10
|
194 }
|
Chris@10
|
195 VLEAVE();
|
Chris@10
|
196 }
|
Chris@10
|
197
|
Chris@10
|
198 static const tw_instr twinstr[] = {
|
Chris@10
|
199 VTW(0, 1),
|
Chris@10
|
200 VTW(0, 2),
|
Chris@10
|
201 VTW(0, 3),
|
Chris@10
|
202 VTW(0, 4),
|
Chris@10
|
203 VTW(0, 5),
|
Chris@10
|
204 VTW(0, 6),
|
Chris@10
|
205 VTW(0, 7),
|
Chris@10
|
206 VTW(0, 8),
|
Chris@10
|
207 VTW(0, 9),
|
Chris@10
|
208 VTW(0, 10),
|
Chris@10
|
209 VTW(0, 11),
|
Chris@10
|
210 VTW(0, 12),
|
Chris@10
|
211 VTW(0, 13),
|
Chris@10
|
212 VTW(0, 14),
|
Chris@10
|
213 {TW_NEXT, VL, 0}
|
Chris@10
|
214 };
|
Chris@10
|
215
|
Chris@10
|
216 static const ct_desc desc = { 15, XSIMD_STRING("t1bv_15"), twinstr, &GENUS, {50, 35, 42, 0}, 0, 0, 0 };
|
Chris@10
|
217
|
Chris@10
|
218 void XSIMD(codelet_t1bv_15) (planner *p) {
|
Chris@10
|
219 X(kdft_dit_register) (p, t1bv_15, &desc);
|
Chris@10
|
220 }
|
Chris@10
|
221 #else /* HAVE_FMA */
|
Chris@10
|
222
|
Chris@10
|
223 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1bv_15 -include t1b.h -sign 1 */
|
Chris@10
|
224
|
Chris@10
|
225 /*
|
Chris@10
|
226 * This function contains 92 FP additions, 53 FP multiplications,
|
Chris@10
|
227 * (or, 78 additions, 39 multiplications, 14 fused multiply/add),
|
Chris@10
|
228 * 52 stack variables, 10 constants, and 30 memory accesses
|
Chris@10
|
229 */
|
Chris@10
|
230 #include "t1b.h"
|
Chris@10
|
231
|
Chris@10
|
232 static void t1bv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
233 {
|
Chris@10
|
234 DVK(KP216506350, +0.216506350946109661690930792688234045867850657);
|
Chris@10
|
235 DVK(KP484122918, +0.484122918275927110647408174972799951354115213);
|
Chris@10
|
236 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
237 DVK(KP509036960, +0.509036960455127183450980863393907648510733164);
|
Chris@10
|
238 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
|
Chris@10
|
239 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
240 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
Chris@10
|
241 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
242 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
243 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
244 {
|
Chris@10
|
245 INT m;
|
Chris@10
|
246 R *x;
|
Chris@10
|
247 x = ii;
|
Chris@10
|
248 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) {
|
Chris@10
|
249 V Ts, TV, T1f, TZ, T10, Tb, Tm, Tt, T1j, T1k, T1l, TI, TM, TR, Tz;
|
Chris@10
|
250 V TD, TQ, T1g, T1h, T1i;
|
Chris@10
|
251 {
|
Chris@10
|
252 V TT, Tr, Tp, Tq, To, TU;
|
Chris@10
|
253 TT = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
254 Tq = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
255 Tr = BYTW(&(W[TWVL * 18]), Tq);
|
Chris@10
|
256 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
257 Tp = BYTW(&(W[TWVL * 8]), To);
|
Chris@10
|
258 Ts = VSUB(Tp, Tr);
|
Chris@10
|
259 TU = VADD(Tp, Tr);
|
Chris@10
|
260 TV = VFNMS(LDK(KP500000000), TU, TT);
|
Chris@10
|
261 T1f = VADD(TT, TU);
|
Chris@10
|
262 }
|
Chris@10
|
263 {
|
Chris@10
|
264 V Tx, TG, TK, TB, T5, Ty, Tg, TH, Tl, TL, Ta, TC;
|
Chris@10
|
265 {
|
Chris@10
|
266 V Tw, TF, TJ, TA;
|
Chris@10
|
267 Tw = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
268 Tx = BYTW(&(W[TWVL * 4]), Tw);
|
Chris@10
|
269 TF = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
270 TG = BYTW(&(W[TWVL * 10]), TF);
|
Chris@10
|
271 TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
272 TK = BYTW(&(W[TWVL * 16]), TJ);
|
Chris@10
|
273 TA = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
Chris@10
|
274 TB = BYTW(&(W[TWVL * 22]), TA);
|
Chris@10
|
275 }
|
Chris@10
|
276 {
|
Chris@10
|
277 V T2, T4, T1, T3;
|
Chris@10
|
278 T1 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
279 T2 = BYTW(&(W[TWVL * 14]), T1);
|
Chris@10
|
280 T3 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
281 T4 = BYTW(&(W[TWVL * 24]), T3);
|
Chris@10
|
282 T5 = VSUB(T2, T4);
|
Chris@10
|
283 Ty = VADD(T2, T4);
|
Chris@10
|
284 }
|
Chris@10
|
285 {
|
Chris@10
|
286 V Td, Tf, Tc, Te;
|
Chris@10
|
287 Tc = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
288 Td = BYTW(&(W[TWVL * 20]), Tc);
|
Chris@10
|
289 Te = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
290 Tf = BYTW(&(W[0]), Te);
|
Chris@10
|
291 Tg = VSUB(Td, Tf);
|
Chris@10
|
292 TH = VADD(Td, Tf);
|
Chris@10
|
293 }
|
Chris@10
|
294 {
|
Chris@10
|
295 V Ti, Tk, Th, Tj;
|
Chris@10
|
296 Th = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
Chris@10
|
297 Ti = BYTW(&(W[TWVL * 26]), Th);
|
Chris@10
|
298 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
299 Tk = BYTW(&(W[TWVL * 6]), Tj);
|
Chris@10
|
300 Tl = VSUB(Ti, Tk);
|
Chris@10
|
301 TL = VADD(Ti, Tk);
|
Chris@10
|
302 }
|
Chris@10
|
303 {
|
Chris@10
|
304 V T7, T9, T6, T8;
|
Chris@10
|
305 T6 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
306 T7 = BYTW(&(W[TWVL * 2]), T6);
|
Chris@10
|
307 T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
308 T9 = BYTW(&(W[TWVL * 12]), T8);
|
Chris@10
|
309 Ta = VSUB(T7, T9);
|
Chris@10
|
310 TC = VADD(T7, T9);
|
Chris@10
|
311 }
|
Chris@10
|
312 TZ = VSUB(T5, Ta);
|
Chris@10
|
313 T10 = VSUB(Tg, Tl);
|
Chris@10
|
314 Tb = VADD(T5, Ta);
|
Chris@10
|
315 Tm = VADD(Tg, Tl);
|
Chris@10
|
316 Tt = VADD(Tb, Tm);
|
Chris@10
|
317 T1j = VADD(TG, TH);
|
Chris@10
|
318 T1k = VADD(TK, TL);
|
Chris@10
|
319 T1l = VADD(T1j, T1k);
|
Chris@10
|
320 TI = VFNMS(LDK(KP500000000), TH, TG);
|
Chris@10
|
321 TM = VFNMS(LDK(KP500000000), TL, TK);
|
Chris@10
|
322 TR = VADD(TI, TM);
|
Chris@10
|
323 Tz = VFNMS(LDK(KP500000000), Ty, Tx);
|
Chris@10
|
324 TD = VFNMS(LDK(KP500000000), TC, TB);
|
Chris@10
|
325 TQ = VADD(Tz, TD);
|
Chris@10
|
326 T1g = VADD(Tx, Ty);
|
Chris@10
|
327 T1h = VADD(TB, TC);
|
Chris@10
|
328 T1i = VADD(T1g, T1h);
|
Chris@10
|
329 }
|
Chris@10
|
330 {
|
Chris@10
|
331 V T1o, T1m, T1n, T1s, T1t, T1q, T1r, T1u, T1p;
|
Chris@10
|
332 T1o = VMUL(LDK(KP559016994), VSUB(T1i, T1l));
|
Chris@10
|
333 T1m = VADD(T1i, T1l);
|
Chris@10
|
334 T1n = VFNMS(LDK(KP250000000), T1m, T1f);
|
Chris@10
|
335 T1q = VSUB(T1g, T1h);
|
Chris@10
|
336 T1r = VSUB(T1j, T1k);
|
Chris@10
|
337 T1s = VBYI(VFNMS(LDK(KP951056516), T1r, VMUL(LDK(KP587785252), T1q)));
|
Chris@10
|
338 T1t = VBYI(VFMA(LDK(KP951056516), T1q, VMUL(LDK(KP587785252), T1r)));
|
Chris@10
|
339 ST(&(x[0]), VADD(T1f, T1m), ms, &(x[0]));
|
Chris@10
|
340 T1u = VADD(T1o, T1n);
|
Chris@10
|
341 ST(&(x[WS(rs, 6)]), VADD(T1t, T1u), ms, &(x[0]));
|
Chris@10
|
342 ST(&(x[WS(rs, 9)]), VSUB(T1u, T1t), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
343 T1p = VSUB(T1n, T1o);
|
Chris@10
|
344 ST(&(x[WS(rs, 3)]), VSUB(T1p, T1s), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
345 ST(&(x[WS(rs, 12)]), VADD(T1s, T1p), ms, &(x[0]));
|
Chris@10
|
346 }
|
Chris@10
|
347 {
|
Chris@10
|
348 V T11, T18, T1e, TO, T16, Tv, T15, TY, T1d, T19, TE, TN;
|
Chris@10
|
349 T11 = VFMA(LDK(KP823639103), TZ, VMUL(LDK(KP509036960), T10));
|
Chris@10
|
350 T18 = VFNMS(LDK(KP823639103), T10, VMUL(LDK(KP509036960), TZ));
|
Chris@10
|
351 T1e = VBYI(VMUL(LDK(KP866025403), VADD(Ts, Tt)));
|
Chris@10
|
352 TE = VSUB(Tz, TD);
|
Chris@10
|
353 TN = VSUB(TI, TM);
|
Chris@10
|
354 TO = VFMA(LDK(KP951056516), TE, VMUL(LDK(KP587785252), TN));
|
Chris@10
|
355 T16 = VFNMS(LDK(KP951056516), TN, VMUL(LDK(KP587785252), TE));
|
Chris@10
|
356 {
|
Chris@10
|
357 V Tn, Tu, TS, TW, TX;
|
Chris@10
|
358 Tn = VMUL(LDK(KP484122918), VSUB(Tb, Tm));
|
Chris@10
|
359 Tu = VFNMS(LDK(KP216506350), Tt, VMUL(LDK(KP866025403), Ts));
|
Chris@10
|
360 Tv = VADD(Tn, Tu);
|
Chris@10
|
361 T15 = VSUB(Tn, Tu);
|
Chris@10
|
362 TS = VMUL(LDK(KP559016994), VSUB(TQ, TR));
|
Chris@10
|
363 TW = VADD(TQ, TR);
|
Chris@10
|
364 TX = VFNMS(LDK(KP250000000), TW, TV);
|
Chris@10
|
365 TY = VADD(TS, TX);
|
Chris@10
|
366 T1d = VADD(TV, TW);
|
Chris@10
|
367 T19 = VSUB(TX, TS);
|
Chris@10
|
368 }
|
Chris@10
|
369 {
|
Chris@10
|
370 V TP, T12, T1b, T1c;
|
Chris@10
|
371 ST(&(x[WS(rs, 5)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
372 ST(&(x[WS(rs, 10)]), VADD(T1e, T1d), ms, &(x[0]));
|
Chris@10
|
373 TP = VBYI(VADD(Tv, TO));
|
Chris@10
|
374 T12 = VSUB(TY, T11);
|
Chris@10
|
375 ST(&(x[WS(rs, 1)]), VADD(TP, T12), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
376 ST(&(x[WS(rs, 14)]), VSUB(T12, TP), ms, &(x[0]));
|
Chris@10
|
377 T1b = VBYI(VSUB(T16, T15));
|
Chris@10
|
378 T1c = VSUB(T19, T18);
|
Chris@10
|
379 ST(&(x[WS(rs, 7)]), VADD(T1b, T1c), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
380 ST(&(x[WS(rs, 8)]), VSUB(T1c, T1b), ms, &(x[0]));
|
Chris@10
|
381 {
|
Chris@10
|
382 V T17, T1a, T13, T14;
|
Chris@10
|
383 T17 = VBYI(VADD(T15, T16));
|
Chris@10
|
384 T1a = VADD(T18, T19);
|
Chris@10
|
385 ST(&(x[WS(rs, 2)]), VADD(T17, T1a), ms, &(x[0]));
|
Chris@10
|
386 ST(&(x[WS(rs, 13)]), VSUB(T1a, T17), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
387 T13 = VBYI(VSUB(Tv, TO));
|
Chris@10
|
388 T14 = VADD(T11, TY);
|
Chris@10
|
389 ST(&(x[WS(rs, 4)]), VADD(T13, T14), ms, &(x[0]));
|
Chris@10
|
390 ST(&(x[WS(rs, 11)]), VSUB(T14, T13), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
391 }
|
Chris@10
|
392 }
|
Chris@10
|
393 }
|
Chris@10
|
394 }
|
Chris@10
|
395 }
|
Chris@10
|
396 VLEAVE();
|
Chris@10
|
397 }
|
Chris@10
|
398
|
Chris@10
|
399 static const tw_instr twinstr[] = {
|
Chris@10
|
400 VTW(0, 1),
|
Chris@10
|
401 VTW(0, 2),
|
Chris@10
|
402 VTW(0, 3),
|
Chris@10
|
403 VTW(0, 4),
|
Chris@10
|
404 VTW(0, 5),
|
Chris@10
|
405 VTW(0, 6),
|
Chris@10
|
406 VTW(0, 7),
|
Chris@10
|
407 VTW(0, 8),
|
Chris@10
|
408 VTW(0, 9),
|
Chris@10
|
409 VTW(0, 10),
|
Chris@10
|
410 VTW(0, 11),
|
Chris@10
|
411 VTW(0, 12),
|
Chris@10
|
412 VTW(0, 13),
|
Chris@10
|
413 VTW(0, 14),
|
Chris@10
|
414 {TW_NEXT, VL, 0}
|
Chris@10
|
415 };
|
Chris@10
|
416
|
Chris@10
|
417 static const ct_desc desc = { 15, XSIMD_STRING("t1bv_15"), twinstr, &GENUS, {78, 39, 14, 0}, 0, 0, 0 };
|
Chris@10
|
418
|
Chris@10
|
419 void XSIMD(codelet_t1bv_15) (planner *p) {
|
Chris@10
|
420 X(kdft_dit_register) (p, t1bv_15, &desc);
|
Chris@10
|
421 }
|
Chris@10
|
422 #endif /* HAVE_FMA */
|