annotate src/fftw-3.3.3/dft/simd/common/t1buv_10.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:39:03 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t1buv_10 -include t1bu.h -sign 1 */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 51 FP additions, 40 FP multiplications,
Chris@10 32 * (or, 33 additions, 22 multiplications, 18 fused multiply/add),
Chris@10 33 * 43 stack variables, 4 constants, and 20 memory accesses
Chris@10 34 */
Chris@10 35 #include "t1bu.h"
Chris@10 36
Chris@10 37 static void t1buv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 43 {
Chris@10 44 INT m;
Chris@10 45 R *x;
Chris@10 46 x = ii;
Chris@10 47 for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@10 48 V Td, TA, T4, Ta, Tk, TE, Tp, TF, TB, T9, T1, T2, Tb;
Chris@10 49 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 50 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 51 {
Chris@10 52 V Tg, Tn, Ti, Tl;
Chris@10 53 Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 54 Tn = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 55 Ti = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Chris@10 56 Tl = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 57 {
Chris@10 58 V T6, T8, T5, Tc;
Chris@10 59 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 60 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 61 {
Chris@10 62 V T3, Th, To, Tj, Tm, T7;
Chris@10 63 T7 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@10 64 T3 = BYTW(&(W[TWVL * 8]), T2);
Chris@10 65 Th = BYTW(&(W[TWVL * 6]), Tg);
Chris@10 66 To = BYTW(&(W[0]), Tn);
Chris@10 67 Tj = BYTW(&(W[TWVL * 16]), Ti);
Chris@10 68 Tm = BYTW(&(W[TWVL * 10]), Tl);
Chris@10 69 T6 = BYTW(&(W[TWVL * 2]), T5);
Chris@10 70 Td = BYTW(&(W[TWVL * 4]), Tc);
Chris@10 71 T8 = BYTW(&(W[TWVL * 12]), T7);
Chris@10 72 TA = VADD(T1, T3);
Chris@10 73 T4 = VSUB(T1, T3);
Chris@10 74 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@10 75 Tk = VSUB(Th, Tj);
Chris@10 76 TE = VADD(Th, Tj);
Chris@10 77 Tp = VSUB(Tm, To);
Chris@10 78 TF = VADD(Tm, To);
Chris@10 79 }
Chris@10 80 TB = VADD(T6, T8);
Chris@10 81 T9 = VSUB(T6, T8);
Chris@10 82 }
Chris@10 83 }
Chris@10 84 Tb = BYTW(&(W[TWVL * 14]), Ta);
Chris@10 85 {
Chris@10 86 V TL, TG, Tw, Tq, TC, Te;
Chris@10 87 TL = VSUB(TE, TF);
Chris@10 88 TG = VADD(TE, TF);
Chris@10 89 Tw = VSUB(Tk, Tp);
Chris@10 90 Tq = VADD(Tk, Tp);
Chris@10 91 TC = VADD(Tb, Td);
Chris@10 92 Te = VSUB(Tb, Td);
Chris@10 93 {
Chris@10 94 V TM, TD, Tv, Tf;
Chris@10 95 TM = VSUB(TB, TC);
Chris@10 96 TD = VADD(TB, TC);
Chris@10 97 Tv = VSUB(T9, Te);
Chris@10 98 Tf = VADD(T9, Te);
Chris@10 99 {
Chris@10 100 V TP, TN, TH, TJ, Tz, Tx, Tr, Tt, TI, Ts;
Chris@10 101 TP = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TL, TM));
Chris@10 102 TN = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TM, TL));
Chris@10 103 TH = VADD(TD, TG);
Chris@10 104 TJ = VSUB(TD, TG);
Chris@10 105 Tz = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tv, Tw));
Chris@10 106 Tx = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tv));
Chris@10 107 Tr = VADD(Tf, Tq);
Chris@10 108 Tt = VSUB(Tf, Tq);
Chris@10 109 ST(&(x[0]), VADD(TA, TH), ms, &(x[0]));
Chris@10 110 TI = VFNMS(LDK(KP250000000), TH, TA);
Chris@10 111 ST(&(x[WS(rs, 5)]), VADD(T4, Tr), ms, &(x[WS(rs, 1)]));
Chris@10 112 Ts = VFNMS(LDK(KP250000000), Tr, T4);
Chris@10 113 {
Chris@10 114 V TK, TO, Tu, Ty;
Chris@10 115 TK = VFNMS(LDK(KP559016994), TJ, TI);
Chris@10 116 TO = VFMA(LDK(KP559016994), TJ, TI);
Chris@10 117 Tu = VFMA(LDK(KP559016994), Tt, Ts);
Chris@10 118 Ty = VFNMS(LDK(KP559016994), Tt, Ts);
Chris@10 119 ST(&(x[WS(rs, 8)]), VFMAI(TN, TK), ms, &(x[0]));
Chris@10 120 ST(&(x[WS(rs, 2)]), VFNMSI(TN, TK), ms, &(x[0]));
Chris@10 121 ST(&(x[WS(rs, 6)]), VFMAI(TP, TO), ms, &(x[0]));
Chris@10 122 ST(&(x[WS(rs, 4)]), VFNMSI(TP, TO), ms, &(x[0]));
Chris@10 123 ST(&(x[WS(rs, 9)]), VFNMSI(Tx, Tu), ms, &(x[WS(rs, 1)]));
Chris@10 124 ST(&(x[WS(rs, 1)]), VFMAI(Tx, Tu), ms, &(x[WS(rs, 1)]));
Chris@10 125 ST(&(x[WS(rs, 7)]), VFNMSI(Tz, Ty), ms, &(x[WS(rs, 1)]));
Chris@10 126 ST(&(x[WS(rs, 3)]), VFMAI(Tz, Ty), ms, &(x[WS(rs, 1)]));
Chris@10 127 }
Chris@10 128 }
Chris@10 129 }
Chris@10 130 }
Chris@10 131 }
Chris@10 132 }
Chris@10 133 VLEAVE();
Chris@10 134 }
Chris@10 135
Chris@10 136 static const tw_instr twinstr[] = {
Chris@10 137 VTW(0, 1),
Chris@10 138 VTW(0, 2),
Chris@10 139 VTW(0, 3),
Chris@10 140 VTW(0, 4),
Chris@10 141 VTW(0, 5),
Chris@10 142 VTW(0, 6),
Chris@10 143 VTW(0, 7),
Chris@10 144 VTW(0, 8),
Chris@10 145 VTW(0, 9),
Chris@10 146 {TW_NEXT, VL, 0}
Chris@10 147 };
Chris@10 148
Chris@10 149 static const ct_desc desc = { 10, XSIMD_STRING("t1buv_10"), twinstr, &GENUS, {33, 22, 18, 0}, 0, 0, 0 };
Chris@10 150
Chris@10 151 void XSIMD(codelet_t1buv_10) (planner *p) {
Chris@10 152 X(kdft_dit_register) (p, t1buv_10, &desc);
Chris@10 153 }
Chris@10 154 #else /* HAVE_FMA */
Chris@10 155
Chris@10 156 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t1buv_10 -include t1bu.h -sign 1 */
Chris@10 157
Chris@10 158 /*
Chris@10 159 * This function contains 51 FP additions, 30 FP multiplications,
Chris@10 160 * (or, 45 additions, 24 multiplications, 6 fused multiply/add),
Chris@10 161 * 32 stack variables, 4 constants, and 20 memory accesses
Chris@10 162 */
Chris@10 163 #include "t1bu.h"
Chris@10 164
Chris@10 165 static void t1buv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 166 {
Chris@10 167 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 168 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 169 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 170 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 171 {
Chris@10 172 INT m;
Chris@10 173 R *x;
Chris@10 174 x = ii;
Chris@10 175 for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@10 176 V Tu, TH, Tg, Tl, Tp, TD, TE, TJ, T5, Ta, To, TA, TB, TI, Tr;
Chris@10 177 V Tt, Ts;
Chris@10 178 Tr = LD(&(x[0]), ms, &(x[0]));
Chris@10 179 Ts = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@10 180 Tt = BYTW(&(W[TWVL * 8]), Ts);
Chris@10 181 Tu = VSUB(Tr, Tt);
Chris@10 182 TH = VADD(Tr, Tt);
Chris@10 183 {
Chris@10 184 V Td, Tk, Tf, Ti;
Chris@10 185 {
Chris@10 186 V Tc, Tj, Te, Th;
Chris@10 187 Tc = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@10 188 Td = BYTW(&(W[TWVL * 6]), Tc);
Chris@10 189 Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 190 Tk = BYTW(&(W[0]), Tj);
Chris@10 191 Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Chris@10 192 Tf = BYTW(&(W[TWVL * 16]), Te);
Chris@10 193 Th = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@10 194 Ti = BYTW(&(W[TWVL * 10]), Th);
Chris@10 195 }
Chris@10 196 Tg = VSUB(Td, Tf);
Chris@10 197 Tl = VSUB(Ti, Tk);
Chris@10 198 Tp = VADD(Tg, Tl);
Chris@10 199 TD = VADD(Td, Tf);
Chris@10 200 TE = VADD(Ti, Tk);
Chris@10 201 TJ = VADD(TD, TE);
Chris@10 202 }
Chris@10 203 {
Chris@10 204 V T2, T9, T4, T7;
Chris@10 205 {
Chris@10 206 V T1, T8, T3, T6;
Chris@10 207 T1 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 208 T2 = BYTW(&(W[TWVL * 2]), T1);
Chris@10 209 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 210 T9 = BYTW(&(W[TWVL * 4]), T8);
Chris@10 211 T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@10 212 T4 = BYTW(&(W[TWVL * 12]), T3);
Chris@10 213 T6 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@10 214 T7 = BYTW(&(W[TWVL * 14]), T6);
Chris@10 215 }
Chris@10 216 T5 = VSUB(T2, T4);
Chris@10 217 Ta = VSUB(T7, T9);
Chris@10 218 To = VADD(T5, Ta);
Chris@10 219 TA = VADD(T2, T4);
Chris@10 220 TB = VADD(T7, T9);
Chris@10 221 TI = VADD(TA, TB);
Chris@10 222 }
Chris@10 223 {
Chris@10 224 V Tq, Tv, Tw, Tn, Tz, Tb, Tm, Ty, Tx;
Chris@10 225 Tq = VMUL(LDK(KP559016994), VSUB(To, Tp));
Chris@10 226 Tv = VADD(To, Tp);
Chris@10 227 Tw = VFNMS(LDK(KP250000000), Tv, Tu);
Chris@10 228 Tb = VSUB(T5, Ta);
Chris@10 229 Tm = VSUB(Tg, Tl);
Chris@10 230 Tn = VBYI(VFMA(LDK(KP951056516), Tb, VMUL(LDK(KP587785252), Tm)));
Chris@10 231 Tz = VBYI(VFNMS(LDK(KP951056516), Tm, VMUL(LDK(KP587785252), Tb)));
Chris@10 232 ST(&(x[WS(rs, 5)]), VADD(Tu, Tv), ms, &(x[WS(rs, 1)]));
Chris@10 233 Ty = VSUB(Tw, Tq);
Chris@10 234 ST(&(x[WS(rs, 3)]), VSUB(Ty, Tz), ms, &(x[WS(rs, 1)]));
Chris@10 235 ST(&(x[WS(rs, 7)]), VADD(Tz, Ty), ms, &(x[WS(rs, 1)]));
Chris@10 236 Tx = VADD(Tq, Tw);
Chris@10 237 ST(&(x[WS(rs, 1)]), VADD(Tn, Tx), ms, &(x[WS(rs, 1)]));
Chris@10 238 ST(&(x[WS(rs, 9)]), VSUB(Tx, Tn), ms, &(x[WS(rs, 1)]));
Chris@10 239 }
Chris@10 240 {
Chris@10 241 V TM, TK, TL, TG, TP, TC, TF, TO, TN;
Chris@10 242 TM = VMUL(LDK(KP559016994), VSUB(TI, TJ));
Chris@10 243 TK = VADD(TI, TJ);
Chris@10 244 TL = VFNMS(LDK(KP250000000), TK, TH);
Chris@10 245 TC = VSUB(TA, TB);
Chris@10 246 TF = VSUB(TD, TE);
Chris@10 247 TG = VBYI(VFNMS(LDK(KP951056516), TF, VMUL(LDK(KP587785252), TC)));
Chris@10 248 TP = VBYI(VFMA(LDK(KP951056516), TC, VMUL(LDK(KP587785252), TF)));
Chris@10 249 ST(&(x[0]), VADD(TH, TK), ms, &(x[0]));
Chris@10 250 TO = VADD(TM, TL);
Chris@10 251 ST(&(x[WS(rs, 4)]), VSUB(TO, TP), ms, &(x[0]));
Chris@10 252 ST(&(x[WS(rs, 6)]), VADD(TP, TO), ms, &(x[0]));
Chris@10 253 TN = VSUB(TL, TM);
Chris@10 254 ST(&(x[WS(rs, 2)]), VADD(TG, TN), ms, &(x[0]));
Chris@10 255 ST(&(x[WS(rs, 8)]), VSUB(TN, TG), ms, &(x[0]));
Chris@10 256 }
Chris@10 257 }
Chris@10 258 }
Chris@10 259 VLEAVE();
Chris@10 260 }
Chris@10 261
Chris@10 262 static const tw_instr twinstr[] = {
Chris@10 263 VTW(0, 1),
Chris@10 264 VTW(0, 2),
Chris@10 265 VTW(0, 3),
Chris@10 266 VTW(0, 4),
Chris@10 267 VTW(0, 5),
Chris@10 268 VTW(0, 6),
Chris@10 269 VTW(0, 7),
Chris@10 270 VTW(0, 8),
Chris@10 271 VTW(0, 9),
Chris@10 272 {TW_NEXT, VL, 0}
Chris@10 273 };
Chris@10 274
Chris@10 275 static const ct_desc desc = { 10, XSIMD_STRING("t1buv_10"), twinstr, &GENUS, {45, 24, 6, 0}, 0, 0, 0 };
Chris@10 276
Chris@10 277 void XSIMD(codelet_t1buv_10) (planner *p) {
Chris@10 278 X(kdft_dit_register) (p, t1buv_10, &desc);
Chris@10 279 }
Chris@10 280 #endif /* HAVE_FMA */