Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:39:31 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1fv_5 -include q1f.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 100 FP additions, 95 FP multiplications,
|
Chris@10
|
32 * (or, 55 additions, 50 multiplications, 45 fused multiply/add),
|
Chris@10
|
33 * 69 stack variables, 4 constants, and 50 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "q1f.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void q1fv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
43 {
|
Chris@10
|
44 INT m;
|
Chris@10
|
45 R *x;
|
Chris@10
|
46 x = ri;
|
Chris@10
|
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) {
|
Chris@10
|
48 V Te, T1w, Ty, TS, TW, Tb, T1t, Tv, T1g, T1c, TP, TV, T1f, T19, TY;
|
Chris@10
|
49 V TX;
|
Chris@10
|
50 {
|
Chris@10
|
51 V T1, T1j, Tl, Ti, Ta, T8, T1A, T1q, T1s, T9, TF, T1r, TZ, TR, TL;
|
Chris@10
|
52 V TC, Ts, Tu, TQ, TI, T15, T1b, T10, T11, Tt;
|
Chris@10
|
53 {
|
Chris@10
|
54 V T1n, T1o, T1k, T1l, T7, Td, T4, Tc;
|
Chris@10
|
55 {
|
Chris@10
|
56 V T5, T6, T2, T3;
|
Chris@10
|
57 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
58 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
59 T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
60 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
61 T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
62 T1j = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)]));
|
Chris@10
|
63 T1n = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)]));
|
Chris@10
|
64 T1o = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
Chris@10
|
65 T1k = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
Chris@10
|
66 T1l = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)]));
|
Chris@10
|
67 T7 = VADD(T5, T6);
|
Chris@10
|
68 Td = VSUB(T5, T6);
|
Chris@10
|
69 T4 = VADD(T2, T3);
|
Chris@10
|
70 Tc = VSUB(T2, T3);
|
Chris@10
|
71 }
|
Chris@10
|
72 {
|
Chris@10
|
73 V Tm, Tn, Tr, Tx, T1v, T1p;
|
Chris@10
|
74 Tl = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
|
Chris@10
|
75 T1v = VSUB(T1n, T1o);
|
Chris@10
|
76 T1p = VADD(T1n, T1o);
|
Chris@10
|
77 {
|
Chris@10
|
78 V T1u, T1m, Tp, Tq;
|
Chris@10
|
79 T1u = VSUB(T1k, T1l);
|
Chris@10
|
80 T1m = VADD(T1k, T1l);
|
Chris@10
|
81 Tp = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
|
Chris@10
|
82 Ti = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tc, Td));
|
Chris@10
|
83 Te = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Td, Tc));
|
Chris@10
|
84 Ta = VSUB(T4, T7);
|
Chris@10
|
85 T8 = VADD(T4, T7);
|
Chris@10
|
86 Tq = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
Chris@10
|
87 T1w = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1v, T1u));
|
Chris@10
|
88 T1A = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1u, T1v));
|
Chris@10
|
89 T1q = VADD(T1m, T1p);
|
Chris@10
|
90 T1s = VSUB(T1m, T1p);
|
Chris@10
|
91 Tm = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
Chris@10
|
92 T9 = VFNMS(LDK(KP250000000), T8, T1);
|
Chris@10
|
93 Tn = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)]));
|
Chris@10
|
94 Tr = VADD(Tp, Tq);
|
Chris@10
|
95 Tx = VSUB(Tp, Tq);
|
Chris@10
|
96 }
|
Chris@10
|
97 {
|
Chris@10
|
98 V TJ, TK, TG, Tw, To, TH, T13, T14;
|
Chris@10
|
99 TF = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
|
Chris@10
|
100 T1r = VFNMS(LDK(KP250000000), T1q, T1j);
|
Chris@10
|
101 TJ = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
|
Chris@10
|
102 TK = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
Chris@10
|
103 TG = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
Chris@10
|
104 Tw = VSUB(Tm, Tn);
|
Chris@10
|
105 To = VADD(Tm, Tn);
|
Chris@10
|
106 TH = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)]));
|
Chris@10
|
107 TZ = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
|
Chris@10
|
108 T13 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
|
Chris@10
|
109 T14 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
Chris@10
|
110 TR = VSUB(TJ, TK);
|
Chris@10
|
111 TL = VADD(TJ, TK);
|
Chris@10
|
112 Ty = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tx, Tw));
|
Chris@10
|
113 TC = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tw, Tx));
|
Chris@10
|
114 Ts = VADD(To, Tr);
|
Chris@10
|
115 Tu = VSUB(To, Tr);
|
Chris@10
|
116 TQ = VSUB(TG, TH);
|
Chris@10
|
117 TI = VADD(TG, TH);
|
Chris@10
|
118 T15 = VADD(T13, T14);
|
Chris@10
|
119 T1b = VSUB(T13, T14);
|
Chris@10
|
120 T10 = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
Chris@10
|
121 T11 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)]));
|
Chris@10
|
122 Tt = VFNMS(LDK(KP250000000), Ts, Tl);
|
Chris@10
|
123 }
|
Chris@10
|
124 }
|
Chris@10
|
125 }
|
Chris@10
|
126 {
|
Chris@10
|
127 V TO, T12, T1a, Th, T1z, TN, TM, T18, T17;
|
Chris@10
|
128 ST(&(x[0]), VADD(T1, T8), ms, &(x[0]));
|
Chris@10
|
129 TS = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TR, TQ));
|
Chris@10
|
130 TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TQ, TR));
|
Chris@10
|
131 TM = VADD(TI, TL);
|
Chris@10
|
132 TO = VSUB(TI, TL);
|
Chris@10
|
133 ST(&(x[WS(rs, 4)]), VADD(T1j, T1q), ms, &(x[0]));
|
Chris@10
|
134 T12 = VADD(T10, T11);
|
Chris@10
|
135 T1a = VSUB(T10, T11);
|
Chris@10
|
136 ST(&(x[WS(rs, 1)]), VADD(Tl, Ts), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
137 Th = VFNMS(LDK(KP559016994), Ta, T9);
|
Chris@10
|
138 Tb = VFMA(LDK(KP559016994), Ta, T9);
|
Chris@10
|
139 T1t = VFMA(LDK(KP559016994), T1s, T1r);
|
Chris@10
|
140 T1z = VFNMS(LDK(KP559016994), T1s, T1r);
|
Chris@10
|
141 ST(&(x[WS(rs, 2)]), VADD(TF, TM), ms, &(x[0]));
|
Chris@10
|
142 TN = VFNMS(LDK(KP250000000), TM, TF);
|
Chris@10
|
143 {
|
Chris@10
|
144 V T16, Tk, Tj, T1C, T1B, TD, TE, TB;
|
Chris@10
|
145 TB = VFNMS(LDK(KP559016994), Tu, Tt);
|
Chris@10
|
146 Tv = VFMA(LDK(KP559016994), Tu, Tt);
|
Chris@10
|
147 T1g = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1a, T1b));
|
Chris@10
|
148 T1c = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1b, T1a));
|
Chris@10
|
149 T18 = VSUB(T12, T15);
|
Chris@10
|
150 T16 = VADD(T12, T15);
|
Chris@10
|
151 Tk = BYTWJ(&(W[TWVL * 4]), VFNMSI(Ti, Th));
|
Chris@10
|
152 Tj = BYTWJ(&(W[TWVL * 2]), VFMAI(Ti, Th));
|
Chris@10
|
153 T1C = BYTWJ(&(W[TWVL * 4]), VFNMSI(T1A, T1z));
|
Chris@10
|
154 T1B = BYTWJ(&(W[TWVL * 2]), VFMAI(T1A, T1z));
|
Chris@10
|
155 TD = BYTWJ(&(W[TWVL * 2]), VFMAI(TC, TB));
|
Chris@10
|
156 TE = BYTWJ(&(W[TWVL * 4]), VFNMSI(TC, TB));
|
Chris@10
|
157 ST(&(x[WS(rs, 3)]), VADD(TZ, T16), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
158 T17 = VFNMS(LDK(KP250000000), T16, TZ);
|
Chris@10
|
159 ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)]));
|
Chris@10
|
160 ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)]));
|
Chris@10
|
161 ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)]));
|
Chris@10
|
162 ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)]));
|
Chris@10
|
163 ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
Chris@10
|
164 ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
Chris@10
|
165 }
|
Chris@10
|
166 TP = VFMA(LDK(KP559016994), TO, TN);
|
Chris@10
|
167 TV = VFNMS(LDK(KP559016994), TO, TN);
|
Chris@10
|
168 T1f = VFNMS(LDK(KP559016994), T18, T17);
|
Chris@10
|
169 T19 = VFMA(LDK(KP559016994), T18, T17);
|
Chris@10
|
170 }
|
Chris@10
|
171 }
|
Chris@10
|
172 TY = BYTWJ(&(W[TWVL * 4]), VFNMSI(TW, TV));
|
Chris@10
|
173 TX = BYTWJ(&(W[TWVL * 2]), VFMAI(TW, TV));
|
Chris@10
|
174 {
|
Chris@10
|
175 V T1i, T1h, TU, TT;
|
Chris@10
|
176 T1i = BYTWJ(&(W[TWVL * 4]), VFNMSI(T1g, T1f));
|
Chris@10
|
177 T1h = BYTWJ(&(W[TWVL * 2]), VFMAI(T1g, T1f));
|
Chris@10
|
178 TU = BYTWJ(&(W[TWVL * 6]), VFMAI(TS, TP));
|
Chris@10
|
179 TT = BYTWJ(&(W[0]), VFNMSI(TS, TP));
|
Chris@10
|
180 {
|
Chris@10
|
181 V Tg, Tf, TA, Tz;
|
Chris@10
|
182 Tg = BYTWJ(&(W[TWVL * 6]), VFMAI(Te, Tb));
|
Chris@10
|
183 Tf = BYTWJ(&(W[0]), VFNMSI(Te, Tb));
|
Chris@10
|
184 TA = BYTWJ(&(W[TWVL * 6]), VFMAI(Ty, Tv));
|
Chris@10
|
185 Tz = BYTWJ(&(W[0]), VFNMSI(Ty, Tv));
|
Chris@10
|
186 {
|
Chris@10
|
187 V T1e, T1d, T1y, T1x;
|
Chris@10
|
188 T1e = BYTWJ(&(W[TWVL * 6]), VFMAI(T1c, T19));
|
Chris@10
|
189 T1d = BYTWJ(&(W[0]), VFNMSI(T1c, T19));
|
Chris@10
|
190 T1y = BYTWJ(&(W[TWVL * 6]), VFMAI(T1w, T1t));
|
Chris@10
|
191 T1x = BYTWJ(&(W[0]), VFNMSI(T1w, T1t));
|
Chris@10
|
192 ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)]));
|
Chris@10
|
193 ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)]));
|
Chris@10
|
194 ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
Chris@10
|
195 ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
Chris@10
|
196 ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)]));
|
Chris@10
|
197 ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)]));
|
Chris@10
|
198 ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)]));
|
Chris@10
|
199 ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)]));
|
Chris@10
|
200 ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
Chris@10
|
201 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
Chris@10
|
202 ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
Chris@10
|
203 ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
Chris@10
|
204 ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)]));
|
Chris@10
|
205 ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)]));
|
Chris@10
|
206 }
|
Chris@10
|
207 }
|
Chris@10
|
208 }
|
Chris@10
|
209 }
|
Chris@10
|
210 }
|
Chris@10
|
211 VLEAVE();
|
Chris@10
|
212 }
|
Chris@10
|
213
|
Chris@10
|
214 static const tw_instr twinstr[] = {
|
Chris@10
|
215 VTW(0, 1),
|
Chris@10
|
216 VTW(0, 2),
|
Chris@10
|
217 VTW(0, 3),
|
Chris@10
|
218 VTW(0, 4),
|
Chris@10
|
219 {TW_NEXT, VL, 0}
|
Chris@10
|
220 };
|
Chris@10
|
221
|
Chris@10
|
222 static const ct_desc desc = { 5, XSIMD_STRING("q1fv_5"), twinstr, &GENUS, {55, 50, 45, 0}, 0, 0, 0 };
|
Chris@10
|
223
|
Chris@10
|
224 void XSIMD(codelet_q1fv_5) (planner *p) {
|
Chris@10
|
225 X(kdft_difsq_register) (p, q1fv_5, &desc);
|
Chris@10
|
226 }
|
Chris@10
|
227 #else /* HAVE_FMA */
|
Chris@10
|
228
|
Chris@10
|
229 /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1fv_5 -include q1f.h */
|
Chris@10
|
230
|
Chris@10
|
231 /*
|
Chris@10
|
232 * This function contains 100 FP additions, 70 FP multiplications,
|
Chris@10
|
233 * (or, 85 additions, 55 multiplications, 15 fused multiply/add),
|
Chris@10
|
234 * 44 stack variables, 4 constants, and 50 memory accesses
|
Chris@10
|
235 */
|
Chris@10
|
236 #include "q1f.h"
|
Chris@10
|
237
|
Chris@10
|
238 static void q1fv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
|
Chris@10
|
239 {
|
Chris@10
|
240 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
241 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
Chris@10
|
242 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
243 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
244 {
|
Chris@10
|
245 INT m;
|
Chris@10
|
246 R *x;
|
Chris@10
|
247 x = ri;
|
Chris@10
|
248 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) {
|
Chris@10
|
249 V T8, T7, Th, Te, T9, Ta, T1q, T1p, T1z, T1w, T1r, T1s, Ts, Tr, TB;
|
Chris@10
|
250 V Ty, Tt, Tu, TM, TL, TV, TS, TN, TO, T16, T15, T1f, T1c, T17, T18;
|
Chris@10
|
251 {
|
Chris@10
|
252 V T6, Td, T3, Tc;
|
Chris@10
|
253 T8 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
254 {
|
Chris@10
|
255 V T4, T5, T1, T2;
|
Chris@10
|
256 T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
257 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
258 T6 = VADD(T4, T5);
|
Chris@10
|
259 Td = VSUB(T4, T5);
|
Chris@10
|
260 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
261 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
262 T3 = VADD(T1, T2);
|
Chris@10
|
263 Tc = VSUB(T1, T2);
|
Chris@10
|
264 }
|
Chris@10
|
265 T7 = VMUL(LDK(KP559016994), VSUB(T3, T6));
|
Chris@10
|
266 Th = VBYI(VFNMS(LDK(KP587785252), Tc, VMUL(LDK(KP951056516), Td)));
|
Chris@10
|
267 Te = VBYI(VFMA(LDK(KP951056516), Tc, VMUL(LDK(KP587785252), Td)));
|
Chris@10
|
268 T9 = VADD(T3, T6);
|
Chris@10
|
269 Ta = VFNMS(LDK(KP250000000), T9, T8);
|
Chris@10
|
270 }
|
Chris@10
|
271 {
|
Chris@10
|
272 V T1o, T1v, T1l, T1u;
|
Chris@10
|
273 T1q = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)]));
|
Chris@10
|
274 {
|
Chris@10
|
275 V T1m, T1n, T1j, T1k;
|
Chris@10
|
276 T1m = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)]));
|
Chris@10
|
277 T1n = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
Chris@10
|
278 T1o = VADD(T1m, T1n);
|
Chris@10
|
279 T1v = VSUB(T1m, T1n);
|
Chris@10
|
280 T1j = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
Chris@10
|
281 T1k = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)]));
|
Chris@10
|
282 T1l = VADD(T1j, T1k);
|
Chris@10
|
283 T1u = VSUB(T1j, T1k);
|
Chris@10
|
284 }
|
Chris@10
|
285 T1p = VMUL(LDK(KP559016994), VSUB(T1l, T1o));
|
Chris@10
|
286 T1z = VBYI(VFNMS(LDK(KP587785252), T1u, VMUL(LDK(KP951056516), T1v)));
|
Chris@10
|
287 T1w = VBYI(VFMA(LDK(KP951056516), T1u, VMUL(LDK(KP587785252), T1v)));
|
Chris@10
|
288 T1r = VADD(T1l, T1o);
|
Chris@10
|
289 T1s = VFNMS(LDK(KP250000000), T1r, T1q);
|
Chris@10
|
290 }
|
Chris@10
|
291 {
|
Chris@10
|
292 V Tq, Tx, Tn, Tw;
|
Chris@10
|
293 Ts = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
|
Chris@10
|
294 {
|
Chris@10
|
295 V To, Tp, Tl, Tm;
|
Chris@10
|
296 To = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
|
Chris@10
|
297 Tp = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
Chris@10
|
298 Tq = VADD(To, Tp);
|
Chris@10
|
299 Tx = VSUB(To, Tp);
|
Chris@10
|
300 Tl = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
Chris@10
|
301 Tm = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)]));
|
Chris@10
|
302 Tn = VADD(Tl, Tm);
|
Chris@10
|
303 Tw = VSUB(Tl, Tm);
|
Chris@10
|
304 }
|
Chris@10
|
305 Tr = VMUL(LDK(KP559016994), VSUB(Tn, Tq));
|
Chris@10
|
306 TB = VBYI(VFNMS(LDK(KP587785252), Tw, VMUL(LDK(KP951056516), Tx)));
|
Chris@10
|
307 Ty = VBYI(VFMA(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tx)));
|
Chris@10
|
308 Tt = VADD(Tn, Tq);
|
Chris@10
|
309 Tu = VFNMS(LDK(KP250000000), Tt, Ts);
|
Chris@10
|
310 }
|
Chris@10
|
311 {
|
Chris@10
|
312 V TK, TR, TH, TQ;
|
Chris@10
|
313 TM = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
|
Chris@10
|
314 {
|
Chris@10
|
315 V TI, TJ, TF, TG;
|
Chris@10
|
316 TI = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
|
Chris@10
|
317 TJ = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
Chris@10
|
318 TK = VADD(TI, TJ);
|
Chris@10
|
319 TR = VSUB(TI, TJ);
|
Chris@10
|
320 TF = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
Chris@10
|
321 TG = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)]));
|
Chris@10
|
322 TH = VADD(TF, TG);
|
Chris@10
|
323 TQ = VSUB(TF, TG);
|
Chris@10
|
324 }
|
Chris@10
|
325 TL = VMUL(LDK(KP559016994), VSUB(TH, TK));
|
Chris@10
|
326 TV = VBYI(VFNMS(LDK(KP587785252), TQ, VMUL(LDK(KP951056516), TR)));
|
Chris@10
|
327 TS = VBYI(VFMA(LDK(KP951056516), TQ, VMUL(LDK(KP587785252), TR)));
|
Chris@10
|
328 TN = VADD(TH, TK);
|
Chris@10
|
329 TO = VFNMS(LDK(KP250000000), TN, TM);
|
Chris@10
|
330 }
|
Chris@10
|
331 {
|
Chris@10
|
332 V T14, T1b, T11, T1a;
|
Chris@10
|
333 T16 = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
|
Chris@10
|
334 {
|
Chris@10
|
335 V T12, T13, TZ, T10;
|
Chris@10
|
336 T12 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
|
Chris@10
|
337 T13 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
Chris@10
|
338 T14 = VADD(T12, T13);
|
Chris@10
|
339 T1b = VSUB(T12, T13);
|
Chris@10
|
340 TZ = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
Chris@10
|
341 T10 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)]));
|
Chris@10
|
342 T11 = VADD(TZ, T10);
|
Chris@10
|
343 T1a = VSUB(TZ, T10);
|
Chris@10
|
344 }
|
Chris@10
|
345 T15 = VMUL(LDK(KP559016994), VSUB(T11, T14));
|
Chris@10
|
346 T1f = VBYI(VFNMS(LDK(KP587785252), T1a, VMUL(LDK(KP951056516), T1b)));
|
Chris@10
|
347 T1c = VBYI(VFMA(LDK(KP951056516), T1a, VMUL(LDK(KP587785252), T1b)));
|
Chris@10
|
348 T17 = VADD(T11, T14);
|
Chris@10
|
349 T18 = VFNMS(LDK(KP250000000), T17, T16);
|
Chris@10
|
350 }
|
Chris@10
|
351 ST(&(x[0]), VADD(T8, T9), ms, &(x[0]));
|
Chris@10
|
352 ST(&(x[WS(rs, 4)]), VADD(T1q, T1r), ms, &(x[0]));
|
Chris@10
|
353 ST(&(x[WS(rs, 2)]), VADD(TM, TN), ms, &(x[0]));
|
Chris@10
|
354 ST(&(x[WS(rs, 3)]), VADD(T16, T17), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
355 ST(&(x[WS(rs, 1)]), VADD(Ts, Tt), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
356 {
|
Chris@10
|
357 V Tj, Tk, Ti, T1B, T1C, T1A;
|
Chris@10
|
358 Ti = VSUB(Ta, T7);
|
Chris@10
|
359 Tj = BYTWJ(&(W[TWVL * 2]), VADD(Th, Ti));
|
Chris@10
|
360 Tk = BYTWJ(&(W[TWVL * 4]), VSUB(Ti, Th));
|
Chris@10
|
361 ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)]));
|
Chris@10
|
362 ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)]));
|
Chris@10
|
363 T1A = VSUB(T1s, T1p);
|
Chris@10
|
364 T1B = BYTWJ(&(W[TWVL * 2]), VADD(T1z, T1A));
|
Chris@10
|
365 T1C = BYTWJ(&(W[TWVL * 4]), VSUB(T1A, T1z));
|
Chris@10
|
366 ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)]));
|
Chris@10
|
367 ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)]));
|
Chris@10
|
368 }
|
Chris@10
|
369 {
|
Chris@10
|
370 V T1h, T1i, T1g, TD, TE, TC;
|
Chris@10
|
371 T1g = VSUB(T18, T15);
|
Chris@10
|
372 T1h = BYTWJ(&(W[TWVL * 2]), VADD(T1f, T1g));
|
Chris@10
|
373 T1i = BYTWJ(&(W[TWVL * 4]), VSUB(T1g, T1f));
|
Chris@10
|
374 ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
Chris@10
|
375 ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
Chris@10
|
376 TC = VSUB(Tu, Tr);
|
Chris@10
|
377 TD = BYTWJ(&(W[TWVL * 2]), VADD(TB, TC));
|
Chris@10
|
378 TE = BYTWJ(&(W[TWVL * 4]), VSUB(TC, TB));
|
Chris@10
|
379 ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
Chris@10
|
380 ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
Chris@10
|
381 }
|
Chris@10
|
382 {
|
Chris@10
|
383 V TX, TY, TW, TT, TU, TP;
|
Chris@10
|
384 TW = VSUB(TO, TL);
|
Chris@10
|
385 TX = BYTWJ(&(W[TWVL * 2]), VADD(TV, TW));
|
Chris@10
|
386 TY = BYTWJ(&(W[TWVL * 4]), VSUB(TW, TV));
|
Chris@10
|
387 ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)]));
|
Chris@10
|
388 ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)]));
|
Chris@10
|
389 TP = VADD(TL, TO);
|
Chris@10
|
390 TT = BYTWJ(&(W[0]), VSUB(TP, TS));
|
Chris@10
|
391 TU = BYTWJ(&(W[TWVL * 6]), VADD(TS, TP));
|
Chris@10
|
392 ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)]));
|
Chris@10
|
393 ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)]));
|
Chris@10
|
394 }
|
Chris@10
|
395 {
|
Chris@10
|
396 V Tf, Tg, Tb, Tz, TA, Tv;
|
Chris@10
|
397 Tb = VADD(T7, Ta);
|
Chris@10
|
398 Tf = BYTWJ(&(W[0]), VSUB(Tb, Te));
|
Chris@10
|
399 Tg = BYTWJ(&(W[TWVL * 6]), VADD(Te, Tb));
|
Chris@10
|
400 ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)]));
|
Chris@10
|
401 ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)]));
|
Chris@10
|
402 Tv = VADD(Tr, Tu);
|
Chris@10
|
403 Tz = BYTWJ(&(W[0]), VSUB(Tv, Ty));
|
Chris@10
|
404 TA = BYTWJ(&(W[TWVL * 6]), VADD(Ty, Tv));
|
Chris@10
|
405 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
Chris@10
|
406 ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
Chris@10
|
407 }
|
Chris@10
|
408 {
|
Chris@10
|
409 V T1d, T1e, T19, T1x, T1y, T1t;
|
Chris@10
|
410 T19 = VADD(T15, T18);
|
Chris@10
|
411 T1d = BYTWJ(&(W[0]), VSUB(T19, T1c));
|
Chris@10
|
412 T1e = BYTWJ(&(W[TWVL * 6]), VADD(T1c, T19));
|
Chris@10
|
413 ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
Chris@10
|
414 ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
Chris@10
|
415 T1t = VADD(T1p, T1s);
|
Chris@10
|
416 T1x = BYTWJ(&(W[0]), VSUB(T1t, T1w));
|
Chris@10
|
417 T1y = BYTWJ(&(W[TWVL * 6]), VADD(T1w, T1t));
|
Chris@10
|
418 ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)]));
|
Chris@10
|
419 ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)]));
|
Chris@10
|
420 }
|
Chris@10
|
421 }
|
Chris@10
|
422 }
|
Chris@10
|
423 VLEAVE();
|
Chris@10
|
424 }
|
Chris@10
|
425
|
Chris@10
|
426 static const tw_instr twinstr[] = {
|
Chris@10
|
427 VTW(0, 1),
|
Chris@10
|
428 VTW(0, 2),
|
Chris@10
|
429 VTW(0, 3),
|
Chris@10
|
430 VTW(0, 4),
|
Chris@10
|
431 {TW_NEXT, VL, 0}
|
Chris@10
|
432 };
|
Chris@10
|
433
|
Chris@10
|
434 static const ct_desc desc = { 5, XSIMD_STRING("q1fv_5"), twinstr, &GENUS, {85, 55, 15, 0}, 0, 0, 0 };
|
Chris@10
|
435
|
Chris@10
|
436 void XSIMD(codelet_q1fv_5) (planner *p) {
|
Chris@10
|
437 X(kdft_difsq_register) (p, q1fv_5, &desc);
|
Chris@10
|
438 }
|
Chris@10
|
439 #endif /* HAVE_FMA */
|