annotate src/fftw-3.3.3/dft/simd/common/q1bv_4.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:39:33 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1bv_4 -include q1b.h -sign 1 */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 44 FP additions, 32 FP multiplications,
Chris@10 32 * (or, 36 additions, 24 multiplications, 8 fused multiply/add),
Chris@10 33 * 38 stack variables, 0 constants, and 32 memory accesses
Chris@10 34 */
Chris@10 35 #include "q1b.h"
Chris@10 36
Chris@10 37 static void q1bv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 {
Chris@10 40 INT m;
Chris@10 41 R *x;
Chris@10 42 x = ii;
Chris@10 43 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
Chris@10 44 V Tb, Tm, Tx, TI;
Chris@10 45 {
Chris@10 46 V Tc, T9, T3, TG, TA, TH, TD, Ta, T6, Td, Tn, To, Tq, Tr, Tf;
Chris@10 47 V Tg;
Chris@10 48 {
Chris@10 49 V T1, T2, Ty, Tz, TB, TC, T4, T5;
Chris@10 50 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 51 T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 52 Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
Chris@10 53 Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
Chris@10 54 TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@10 55 TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@10 56 T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 57 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 58 Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
Chris@10 59 T9 = VADD(T1, T2);
Chris@10 60 T3 = VSUB(T1, T2);
Chris@10 61 TG = VADD(Ty, Tz);
Chris@10 62 TA = VSUB(Ty, Tz);
Chris@10 63 TH = VADD(TB, TC);
Chris@10 64 TD = VSUB(TB, TC);
Chris@10 65 Ta = VADD(T4, T5);
Chris@10 66 T6 = VSUB(T4, T5);
Chris@10 67 Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
Chris@10 68 Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
Chris@10 69 To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
Chris@10 70 Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@10 71 Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@10 72 Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@10 73 Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@10 74 }
Chris@10 75 {
Chris@10 76 V Tk, Te, Tv, Tp, Tw, Ts, Tl, Th, T7, TE, Tu, TF;
Chris@10 77 ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
Chris@10 78 Tk = VADD(Tc, Td);
Chris@10 79 Te = VSUB(Tc, Td);
Chris@10 80 Tv = VADD(Tn, To);
Chris@10 81 Tp = VSUB(Tn, To);
Chris@10 82 Tw = VADD(Tq, Tr);
Chris@10 83 Ts = VSUB(Tq, Tr);
Chris@10 84 Tl = VADD(Tf, Tg);
Chris@10 85 Th = VSUB(Tf, Tg);
Chris@10 86 ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
Chris@10 87 T7 = BYTW(&(W[TWVL * 4]), VFNMSI(T6, T3));
Chris@10 88 TE = BYTW(&(W[TWVL * 4]), VFNMSI(TD, TA));
Chris@10 89 {
Chris@10 90 V Tt, Ti, Tj, T8;
Chris@10 91 T8 = BYTW(&(W[0]), VFMAI(T6, T3));
Chris@10 92 ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
Chris@10 93 Tt = BYTW(&(W[TWVL * 4]), VFNMSI(Ts, Tp));
Chris@10 94 ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
Chris@10 95 Ti = BYTW(&(W[TWVL * 4]), VFNMSI(Th, Te));
Chris@10 96 Tj = BYTW(&(W[0]), VFMAI(Th, Te));
Chris@10 97 ST(&(x[WS(vs, 3)]), T7, ms, &(x[WS(vs, 3)]));
Chris@10 98 ST(&(x[WS(vs, 3) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@10 99 ST(&(x[WS(vs, 1)]), T8, ms, &(x[WS(vs, 1)]));
Chris@10 100 Tu = BYTW(&(W[0]), VFMAI(Ts, Tp));
Chris@10 101 ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 3)]));
Chris@10 102 TF = BYTW(&(W[0]), VFMAI(TD, TA));
Chris@10 103 ST(&(x[WS(vs, 3) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@10 104 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@10 105 }
Chris@10 106 Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta));
Chris@10 107 Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl));
Chris@10 108 Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw));
Chris@10 109 ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 1)]));
Chris@10 110 TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH));
Chris@10 111 ST(&(x[WS(vs, 1) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@10 112 }
Chris@10 113 }
Chris@10 114 ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
Chris@10 115 ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@10 116 ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
Chris@10 117 ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@10 118 }
Chris@10 119 }
Chris@10 120 VLEAVE();
Chris@10 121 }
Chris@10 122
Chris@10 123 static const tw_instr twinstr[] = {
Chris@10 124 VTW(0, 1),
Chris@10 125 VTW(0, 2),
Chris@10 126 VTW(0, 3),
Chris@10 127 {TW_NEXT, VL, 0}
Chris@10 128 };
Chris@10 129
Chris@10 130 static const ct_desc desc = { 4, XSIMD_STRING("q1bv_4"), twinstr, &GENUS, {36, 24, 8, 0}, 0, 0, 0 };
Chris@10 131
Chris@10 132 void XSIMD(codelet_q1bv_4) (planner *p) {
Chris@10 133 X(kdft_difsq_register) (p, q1bv_4, &desc);
Chris@10 134 }
Chris@10 135 #else /* HAVE_FMA */
Chris@10 136
Chris@10 137 /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1bv_4 -include q1b.h -sign 1 */
Chris@10 138
Chris@10 139 /*
Chris@10 140 * This function contains 44 FP additions, 24 FP multiplications,
Chris@10 141 * (or, 44 additions, 24 multiplications, 0 fused multiply/add),
Chris@10 142 * 22 stack variables, 0 constants, and 32 memory accesses
Chris@10 143 */
Chris@10 144 #include "q1b.h"
Chris@10 145
Chris@10 146 static void q1bv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
Chris@10 147 {
Chris@10 148 {
Chris@10 149 INT m;
Chris@10 150 R *x;
Chris@10 151 x = ii;
Chris@10 152 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
Chris@10 153 V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;
Chris@10 154 V Tl;
Chris@10 155 {
Chris@10 156 V T1, T2, Ty, Tz;
Chris@10 157 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@10 158 T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@10 159 T3 = VSUB(T1, T2);
Chris@10 160 T9 = VADD(T1, T2);
Chris@10 161 Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
Chris@10 162 Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
Chris@10 163 TA = VSUB(Ty, Tz);
Chris@10 164 TG = VADD(Ty, Tz);
Chris@10 165 }
Chris@10 166 {
Chris@10 167 V TB, TC, T4, T5;
Chris@10 168 TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@10 169 TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@10 170 TD = VBYI(VSUB(TB, TC));
Chris@10 171 TH = VADD(TB, TC);
Chris@10 172 T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@10 173 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@10 174 T6 = VBYI(VSUB(T4, T5));
Chris@10 175 Ta = VADD(T4, T5);
Chris@10 176 }
Chris@10 177 {
Chris@10 178 V Tc, Td, Tn, To;
Chris@10 179 Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
Chris@10 180 Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
Chris@10 181 Te = VSUB(Tc, Td);
Chris@10 182 Tk = VADD(Tc, Td);
Chris@10 183 Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
Chris@10 184 To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
Chris@10 185 Tp = VSUB(Tn, To);
Chris@10 186 Tv = VADD(Tn, To);
Chris@10 187 }
Chris@10 188 {
Chris@10 189 V Tq, Tr, Tf, Tg;
Chris@10 190 Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@10 191 Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@10 192 Ts = VBYI(VSUB(Tq, Tr));
Chris@10 193 Tw = VADD(Tq, Tr);
Chris@10 194 Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@10 195 Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@10 196 Th = VBYI(VSUB(Tf, Tg));
Chris@10 197 Tl = VADD(Tf, Tg);
Chris@10 198 }
Chris@10 199 ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
Chris@10 200 ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
Chris@10 201 ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
Chris@10 202 ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
Chris@10 203 {
Chris@10 204 V T7, Ti, Tt, TE;
Chris@10 205 T7 = BYTW(&(W[TWVL * 4]), VSUB(T3, T6));
Chris@10 206 ST(&(x[WS(vs, 3)]), T7, ms, &(x[WS(vs, 3)]));
Chris@10 207 Ti = BYTW(&(W[TWVL * 4]), VSUB(Te, Th));
Chris@10 208 ST(&(x[WS(vs, 3) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@10 209 Tt = BYTW(&(W[TWVL * 4]), VSUB(Tp, Ts));
Chris@10 210 ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 3)]));
Chris@10 211 TE = BYTW(&(W[TWVL * 4]), VSUB(TA, TD));
Chris@10 212 ST(&(x[WS(vs, 3) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
Chris@10 213 }
Chris@10 214 {
Chris@10 215 V T8, Tj, Tu, TF;
Chris@10 216 T8 = BYTW(&(W[0]), VADD(T3, T6));
Chris@10 217 ST(&(x[WS(vs, 1)]), T8, ms, &(x[WS(vs, 1)]));
Chris@10 218 Tj = BYTW(&(W[0]), VADD(Te, Th));
Chris@10 219 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@10 220 Tu = BYTW(&(W[0]), VADD(Tp, Ts));
Chris@10 221 ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 1)]));
Chris@10 222 TF = BYTW(&(W[0]), VADD(TA, TD));
Chris@10 223 ST(&(x[WS(vs, 1) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
Chris@10 224 }
Chris@10 225 {
Chris@10 226 V Tb, Tm, Tx, TI;
Chris@10 227 Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta));
Chris@10 228 ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
Chris@10 229 Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl));
Chris@10 230 ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@10 231 Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw));
Chris@10 232 ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
Chris@10 233 TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH));
Chris@10 234 ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
Chris@10 235 }
Chris@10 236 }
Chris@10 237 }
Chris@10 238 VLEAVE();
Chris@10 239 }
Chris@10 240
Chris@10 241 static const tw_instr twinstr[] = {
Chris@10 242 VTW(0, 1),
Chris@10 243 VTW(0, 2),
Chris@10 244 VTW(0, 3),
Chris@10 245 {TW_NEXT, VL, 0}
Chris@10 246 };
Chris@10 247
Chris@10 248 static const ct_desc desc = { 4, XSIMD_STRING("q1bv_4"), twinstr, &GENUS, {44, 24, 0, 0}, 0, 0, 0 };
Chris@10 249
Chris@10 250 void XSIMD(codelet_q1bv_4) (planner *p) {
Chris@10 251 X(kdft_difsq_register) (p, q1bv_4, &desc);
Chris@10 252 }
Chris@10 253 #endif /* HAVE_FMA */