annotate src/fftw-3.3.3/dft/simd/common/n2fv_6.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:37:21 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name n2fv_6 -with-ostride 2 -include n2f.h -store-multiple 2 */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 18 FP additions, 8 FP multiplications,
Chris@10 32 * (or, 12 additions, 2 multiplications, 6 fused multiply/add),
Chris@10 33 * 29 stack variables, 2 constants, and 15 memory accesses
Chris@10 34 */
Chris@10 35 #include "n2f.h"
Chris@10 36
Chris@10 37 static void n2fv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 41 {
Chris@10 42 INT i;
Chris@10 43 const R *xi;
Chris@10 44 R *xo;
Chris@10 45 xi = ri;
Chris@10 46 xo = ro;
Chris@10 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) {
Chris@10 48 V T1, T2, T4, T5, T7, T8;
Chris@10 49 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 50 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 51 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 52 T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 53 T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 54 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 55 {
Chris@10 56 V T3, Td, T6, Te, T9, Tf;
Chris@10 57 T3 = VSUB(T1, T2);
Chris@10 58 Td = VADD(T1, T2);
Chris@10 59 T6 = VSUB(T4, T5);
Chris@10 60 Te = VADD(T4, T5);
Chris@10 61 T9 = VSUB(T7, T8);
Chris@10 62 Tf = VADD(T7, T8);
Chris@10 63 {
Chris@10 64 V Tg, Ti, Ta, Tc;
Chris@10 65 Tg = VADD(Te, Tf);
Chris@10 66 Ti = VMUL(LDK(KP866025403), VSUB(Tf, Te));
Chris@10 67 Ta = VADD(T6, T9);
Chris@10 68 Tc = VMUL(LDK(KP866025403), VSUB(T9, T6));
Chris@10 69 {
Chris@10 70 V Th, Tj, Tb, Tk;
Chris@10 71 Th = VFNMS(LDK(KP500000000), Tg, Td);
Chris@10 72 Tj = VADD(Td, Tg);
Chris@10 73 STM2(&(xo[0]), Tj, ovs, &(xo[0]));
Chris@10 74 Tb = VFNMS(LDK(KP500000000), Ta, T3);
Chris@10 75 Tk = VADD(T3, Ta);
Chris@10 76 STM2(&(xo[6]), Tk, ovs, &(xo[2]));
Chris@10 77 {
Chris@10 78 V Tl, Tm, Tn, To;
Chris@10 79 Tl = VFMAI(Ti, Th);
Chris@10 80 STM2(&(xo[8]), Tl, ovs, &(xo[0]));
Chris@10 81 Tm = VFNMSI(Ti, Th);
Chris@10 82 STM2(&(xo[4]), Tm, ovs, &(xo[0]));
Chris@10 83 STN2(&(xo[4]), Tm, Tk, ovs);
Chris@10 84 Tn = VFMAI(Tc, Tb);
Chris@10 85 STM2(&(xo[2]), Tn, ovs, &(xo[2]));
Chris@10 86 STN2(&(xo[0]), Tj, Tn, ovs);
Chris@10 87 To = VFNMSI(Tc, Tb);
Chris@10 88 STM2(&(xo[10]), To, ovs, &(xo[2]));
Chris@10 89 STN2(&(xo[8]), Tl, To, ovs);
Chris@10 90 }
Chris@10 91 }
Chris@10 92 }
Chris@10 93 }
Chris@10 94 }
Chris@10 95 }
Chris@10 96 VLEAVE();
Chris@10 97 }
Chris@10 98
Chris@10 99 static const kdft_desc desc = { 6, XSIMD_STRING("n2fv_6"), {12, 2, 6, 0}, &GENUS, 0, 2, 0, 0 };
Chris@10 100
Chris@10 101 void XSIMD(codelet_n2fv_6) (planner *p) {
Chris@10 102 X(kdft_register) (p, n2fv_6, &desc);
Chris@10 103 }
Chris@10 104
Chris@10 105 #else /* HAVE_FMA */
Chris@10 106
Chris@10 107 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name n2fv_6 -with-ostride 2 -include n2f.h -store-multiple 2 */
Chris@10 108
Chris@10 109 /*
Chris@10 110 * This function contains 18 FP additions, 4 FP multiplications,
Chris@10 111 * (or, 16 additions, 2 multiplications, 2 fused multiply/add),
Chris@10 112 * 25 stack variables, 2 constants, and 15 memory accesses
Chris@10 113 */
Chris@10 114 #include "n2f.h"
Chris@10 115
Chris@10 116 static void n2fv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 117 {
Chris@10 118 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 119 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 120 {
Chris@10 121 INT i;
Chris@10 122 const R *xi;
Chris@10 123 R *xo;
Chris@10 124 xi = ri;
Chris@10 125 xo = ro;
Chris@10 126 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) {
Chris@10 127 V T3, Td, T6, Te, T9, Tf, Ta, Tg, T1, T2, Tj, Tk;
Chris@10 128 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 129 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 130 T3 = VSUB(T1, T2);
Chris@10 131 Td = VADD(T1, T2);
Chris@10 132 {
Chris@10 133 V T4, T5, T7, T8;
Chris@10 134 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 135 T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 136 T6 = VSUB(T4, T5);
Chris@10 137 Te = VADD(T4, T5);
Chris@10 138 T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 139 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 140 T9 = VSUB(T7, T8);
Chris@10 141 Tf = VADD(T7, T8);
Chris@10 142 }
Chris@10 143 Ta = VADD(T6, T9);
Chris@10 144 Tg = VADD(Te, Tf);
Chris@10 145 Tj = VADD(T3, Ta);
Chris@10 146 STM2(&(xo[6]), Tj, ovs, &(xo[2]));
Chris@10 147 Tk = VADD(Td, Tg);
Chris@10 148 STM2(&(xo[0]), Tk, ovs, &(xo[0]));
Chris@10 149 {
Chris@10 150 V Tl, Tb, Tc, Tm;
Chris@10 151 Tb = VFNMS(LDK(KP500000000), Ta, T3);
Chris@10 152 Tc = VBYI(VMUL(LDK(KP866025403), VSUB(T9, T6)));
Chris@10 153 Tl = VSUB(Tb, Tc);
Chris@10 154 STM2(&(xo[10]), Tl, ovs, &(xo[2]));
Chris@10 155 Tm = VADD(Tb, Tc);
Chris@10 156 STM2(&(xo[2]), Tm, ovs, &(xo[2]));
Chris@10 157 STN2(&(xo[0]), Tk, Tm, ovs);
Chris@10 158 {
Chris@10 159 V Th, Ti, Tn, To;
Chris@10 160 Th = VFNMS(LDK(KP500000000), Tg, Td);
Chris@10 161 Ti = VBYI(VMUL(LDK(KP866025403), VSUB(Tf, Te)));
Chris@10 162 Tn = VSUB(Th, Ti);
Chris@10 163 STM2(&(xo[4]), Tn, ovs, &(xo[0]));
Chris@10 164 STN2(&(xo[4]), Tn, Tj, ovs);
Chris@10 165 To = VADD(Th, Ti);
Chris@10 166 STM2(&(xo[8]), To, ovs, &(xo[0]));
Chris@10 167 STN2(&(xo[8]), To, Tl, ovs);
Chris@10 168 }
Chris@10 169 }
Chris@10 170 }
Chris@10 171 }
Chris@10 172 VLEAVE();
Chris@10 173 }
Chris@10 174
Chris@10 175 static const kdft_desc desc = { 6, XSIMD_STRING("n2fv_6"), {16, 2, 2, 0}, &GENUS, 0, 2, 0, 0 };
Chris@10 176
Chris@10 177 void XSIMD(codelet_n2fv_6) (planner *p) {
Chris@10 178 X(kdft_register) (p, n2fv_6, &desc);
Chris@10 179 }
Chris@10 180
Chris@10 181 #endif /* HAVE_FMA */