annotate src/fftw-3.3.3/dft/simd/common/n2fv_16.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:37:23 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n2fv_16 -with-ostride 2 -include n2f.h -store-multiple 2 */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 72 FP additions, 34 FP multiplications,
Chris@10 32 * (or, 38 additions, 0 multiplications, 34 fused multiply/add),
Chris@10 33 * 62 stack variables, 3 constants, and 40 memory accesses
Chris@10 34 */
Chris@10 35 #include "n2f.h"
Chris@10 36
Chris@10 37 static void n2fv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
Chris@10 40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
Chris@10 41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 42 {
Chris@10 43 INT i;
Chris@10 44 const R *xi;
Chris@10 45 R *xo;
Chris@10 46 xi = ri;
Chris@10 47 xo = ro;
Chris@10 48 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) {
Chris@10 49 V T7, Tu, TF, TB, T13, TL, TO, TX, TC, Te, TP, Th, TQ, Tk, TW;
Chris@10 50 V T16;
Chris@10 51 {
Chris@10 52 V TH, TU, Tz, Tf, TK, TV, TA, TM, Ta, TN, Td, Tg, Ti, Tj;
Chris@10 53 {
Chris@10 54 V T1, T2, T4, T5, To, Tp, Tr, Ts;
Chris@10 55 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 56 T2 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 57 T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 58 T5 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
Chris@10 59 To = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
Chris@10 60 Tp = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 61 Tr = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 62 Ts = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@10 63 {
Chris@10 64 V T8, TJ, Tq, TI, Tt, T9, Tb, Tc, T3, T6;
Chris@10 65 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 66 TH = VSUB(T1, T2);
Chris@10 67 T3 = VADD(T1, T2);
Chris@10 68 TU = VSUB(T4, T5);
Chris@10 69 T6 = VADD(T4, T5);
Chris@10 70 TJ = VSUB(To, Tp);
Chris@10 71 Tq = VADD(To, Tp);
Chris@10 72 TI = VSUB(Tr, Ts);
Chris@10 73 Tt = VADD(Tr, Ts);
Chris@10 74 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@10 75 Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 76 Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
Chris@10 77 T7 = VSUB(T3, T6);
Chris@10 78 Tz = VADD(T3, T6);
Chris@10 79 Tf = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)]));
Chris@10 80 TK = VADD(TI, TJ);
Chris@10 81 TV = VSUB(TJ, TI);
Chris@10 82 TA = VADD(Tt, Tq);
Chris@10 83 Tu = VSUB(Tq, Tt);
Chris@10 84 TM = VSUB(T8, T9);
Chris@10 85 Ta = VADD(T8, T9);
Chris@10 86 TN = VSUB(Tb, Tc);
Chris@10 87 Td = VADD(Tb, Tc);
Chris@10 88 Tg = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 89 Ti = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 90 Tj = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@10 91 }
Chris@10 92 }
Chris@10 93 TF = VSUB(Tz, TA);
Chris@10 94 TB = VADD(Tz, TA);
Chris@10 95 T13 = VFNMS(LDK(KP707106781), TK, TH);
Chris@10 96 TL = VFMA(LDK(KP707106781), TK, TH);
Chris@10 97 TO = VFNMS(LDK(KP414213562), TN, TM);
Chris@10 98 TX = VFMA(LDK(KP414213562), TM, TN);
Chris@10 99 TC = VADD(Ta, Td);
Chris@10 100 Te = VSUB(Ta, Td);
Chris@10 101 TP = VSUB(Tf, Tg);
Chris@10 102 Th = VADD(Tf, Tg);
Chris@10 103 TQ = VSUB(Tj, Ti);
Chris@10 104 Tk = VADD(Ti, Tj);
Chris@10 105 TW = VFNMS(LDK(KP707106781), TV, TU);
Chris@10 106 T16 = VFMA(LDK(KP707106781), TV, TU);
Chris@10 107 }
Chris@10 108 {
Chris@10 109 V TY, TR, Tl, TD;
Chris@10 110 TY = VFMA(LDK(KP414213562), TP, TQ);
Chris@10 111 TR = VFNMS(LDK(KP414213562), TQ, TP);
Chris@10 112 Tl = VSUB(Th, Tk);
Chris@10 113 TD = VADD(Th, Tk);
Chris@10 114 {
Chris@10 115 V TS, T17, TZ, T14;
Chris@10 116 TS = VADD(TO, TR);
Chris@10 117 T17 = VSUB(TR, TO);
Chris@10 118 TZ = VSUB(TX, TY);
Chris@10 119 T14 = VADD(TX, TY);
Chris@10 120 {
Chris@10 121 V TE, TG, Tm, Tv;
Chris@10 122 TE = VADD(TC, TD);
Chris@10 123 TG = VSUB(TD, TC);
Chris@10 124 Tm = VADD(Te, Tl);
Chris@10 125 Tv = VSUB(Tl, Te);
Chris@10 126 {
Chris@10 127 V T18, T1a, TT, T11;
Chris@10 128 T18 = VFNMS(LDK(KP923879532), T17, T16);
Chris@10 129 T1a = VFMA(LDK(KP923879532), T17, T16);
Chris@10 130 TT = VFNMS(LDK(KP923879532), TS, TL);
Chris@10 131 T11 = VFMA(LDK(KP923879532), TS, TL);
Chris@10 132 {
Chris@10 133 V T15, T19, T10, T12;
Chris@10 134 T15 = VFNMS(LDK(KP923879532), T14, T13);
Chris@10 135 T19 = VFMA(LDK(KP923879532), T14, T13);
Chris@10 136 T10 = VFNMS(LDK(KP923879532), TZ, TW);
Chris@10 137 T12 = VFMA(LDK(KP923879532), TZ, TW);
Chris@10 138 {
Chris@10 139 V T1b, T1c, T1d, T1e;
Chris@10 140 T1b = VFMAI(TG, TF);
Chris@10 141 STM2(&(xo[8]), T1b, ovs, &(xo[0]));
Chris@10 142 T1c = VFNMSI(TG, TF);
Chris@10 143 STM2(&(xo[24]), T1c, ovs, &(xo[0]));
Chris@10 144 T1d = VADD(TB, TE);
Chris@10 145 STM2(&(xo[0]), T1d, ovs, &(xo[0]));
Chris@10 146 T1e = VSUB(TB, TE);
Chris@10 147 STM2(&(xo[16]), T1e, ovs, &(xo[0]));
Chris@10 148 {
Chris@10 149 V Tw, Ty, Tn, Tx;
Chris@10 150 Tw = VFNMS(LDK(KP707106781), Tv, Tu);
Chris@10 151 Ty = VFMA(LDK(KP707106781), Tv, Tu);
Chris@10 152 Tn = VFNMS(LDK(KP707106781), Tm, T7);
Chris@10 153 Tx = VFMA(LDK(KP707106781), Tm, T7);
Chris@10 154 {
Chris@10 155 V T1f, T1g, T1h, T1i;
Chris@10 156 T1f = VFMAI(T1a, T19);
Chris@10 157 STM2(&(xo[6]), T1f, ovs, &(xo[2]));
Chris@10 158 T1g = VFNMSI(T1a, T19);
Chris@10 159 STM2(&(xo[26]), T1g, ovs, &(xo[2]));
Chris@10 160 STN2(&(xo[24]), T1c, T1g, ovs);
Chris@10 161 T1h = VFMAI(T18, T15);
Chris@10 162 STM2(&(xo[22]), T1h, ovs, &(xo[2]));
Chris@10 163 T1i = VFNMSI(T18, T15);
Chris@10 164 STM2(&(xo[10]), T1i, ovs, &(xo[2]));
Chris@10 165 STN2(&(xo[8]), T1b, T1i, ovs);
Chris@10 166 {
Chris@10 167 V T1j, T1k, T1l, T1m;
Chris@10 168 T1j = VFNMSI(T12, T11);
Chris@10 169 STM2(&(xo[2]), T1j, ovs, &(xo[2]));
Chris@10 170 STN2(&(xo[0]), T1d, T1j, ovs);
Chris@10 171 T1k = VFMAI(T12, T11);
Chris@10 172 STM2(&(xo[30]), T1k, ovs, &(xo[2]));
Chris@10 173 T1l = VFMAI(T10, TT);
Chris@10 174 STM2(&(xo[14]), T1l, ovs, &(xo[2]));
Chris@10 175 T1m = VFNMSI(T10, TT);
Chris@10 176 STM2(&(xo[18]), T1m, ovs, &(xo[2]));
Chris@10 177 STN2(&(xo[16]), T1e, T1m, ovs);
Chris@10 178 {
Chris@10 179 V T1n, T1o, T1p, T1q;
Chris@10 180 T1n = VFNMSI(Ty, Tx);
Chris@10 181 STM2(&(xo[28]), T1n, ovs, &(xo[0]));
Chris@10 182 STN2(&(xo[28]), T1n, T1k, ovs);
Chris@10 183 T1o = VFMAI(Ty, Tx);
Chris@10 184 STM2(&(xo[4]), T1o, ovs, &(xo[0]));
Chris@10 185 STN2(&(xo[4]), T1o, T1f, ovs);
Chris@10 186 T1p = VFMAI(Tw, Tn);
Chris@10 187 STM2(&(xo[20]), T1p, ovs, &(xo[0]));
Chris@10 188 STN2(&(xo[20]), T1p, T1h, ovs);
Chris@10 189 T1q = VFNMSI(Tw, Tn);
Chris@10 190 STM2(&(xo[12]), T1q, ovs, &(xo[0]));
Chris@10 191 STN2(&(xo[12]), T1q, T1l, ovs);
Chris@10 192 }
Chris@10 193 }
Chris@10 194 }
Chris@10 195 }
Chris@10 196 }
Chris@10 197 }
Chris@10 198 }
Chris@10 199 }
Chris@10 200 }
Chris@10 201 }
Chris@10 202 }
Chris@10 203 }
Chris@10 204 VLEAVE();
Chris@10 205 }
Chris@10 206
Chris@10 207 static const kdft_desc desc = { 16, XSIMD_STRING("n2fv_16"), {38, 0, 34, 0}, &GENUS, 0, 2, 0, 0 };
Chris@10 208
Chris@10 209 void XSIMD(codelet_n2fv_16) (planner *p) {
Chris@10 210 X(kdft_register) (p, n2fv_16, &desc);
Chris@10 211 }
Chris@10 212
Chris@10 213 #else /* HAVE_FMA */
Chris@10 214
Chris@10 215 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n2fv_16 -with-ostride 2 -include n2f.h -store-multiple 2 */
Chris@10 216
Chris@10 217 /*
Chris@10 218 * This function contains 72 FP additions, 12 FP multiplications,
Chris@10 219 * (or, 68 additions, 8 multiplications, 4 fused multiply/add),
Chris@10 220 * 38 stack variables, 3 constants, and 40 memory accesses
Chris@10 221 */
Chris@10 222 #include "n2f.h"
Chris@10 223
Chris@10 224 static void n2fv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 225 {
Chris@10 226 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
Chris@10 227 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
Chris@10 228 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 229 {
Chris@10 230 INT i;
Chris@10 231 const R *xi;
Chris@10 232 R *xo;
Chris@10 233 xi = ri;
Chris@10 234 xo = ro;
Chris@10 235 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) {
Chris@10 236 V Tp, T13, Tu, TN, Tm, T14, Tv, TY, T7, T17, Ty, TT, Te, T16, Tx;
Chris@10 237 V TQ;
Chris@10 238 {
Chris@10 239 V Tn, To, TM, Ts, Tt, TL;
Chris@10 240 Tn = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 241 To = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
Chris@10 242 TM = VADD(Tn, To);
Chris@10 243 Ts = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 244 Tt = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 245 TL = VADD(Ts, Tt);
Chris@10 246 Tp = VSUB(Tn, To);
Chris@10 247 T13 = VADD(TL, TM);
Chris@10 248 Tu = VSUB(Ts, Tt);
Chris@10 249 TN = VSUB(TL, TM);
Chris@10 250 }
Chris@10 251 {
Chris@10 252 V Ti, TW, Tl, TX;
Chris@10 253 {
Chris@10 254 V Tg, Th, Tj, Tk;
Chris@10 255 Tg = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
Chris@10 256 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 257 Ti = VSUB(Tg, Th);
Chris@10 258 TW = VADD(Tg, Th);
Chris@10 259 Tj = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 260 Tk = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@10 261 Tl = VSUB(Tj, Tk);
Chris@10 262 TX = VADD(Tj, Tk);
Chris@10 263 }
Chris@10 264 Tm = VMUL(LDK(KP707106781), VSUB(Ti, Tl));
Chris@10 265 T14 = VADD(TX, TW);
Chris@10 266 Tv = VMUL(LDK(KP707106781), VADD(Tl, Ti));
Chris@10 267 TY = VSUB(TW, TX);
Chris@10 268 }
Chris@10 269 {
Chris@10 270 V T3, TR, T6, TS;
Chris@10 271 {
Chris@10 272 V T1, T2, T4, T5;
Chris@10 273 T1 = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)]));
Chris@10 274 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 275 T3 = VSUB(T1, T2);
Chris@10 276 TR = VADD(T1, T2);
Chris@10 277 T4 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 278 T5 = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@10 279 T6 = VSUB(T4, T5);
Chris@10 280 TS = VADD(T4, T5);
Chris@10 281 }
Chris@10 282 T7 = VFNMS(LDK(KP923879532), T6, VMUL(LDK(KP382683432), T3));
Chris@10 283 T17 = VADD(TR, TS);
Chris@10 284 Ty = VFMA(LDK(KP923879532), T3, VMUL(LDK(KP382683432), T6));
Chris@10 285 TT = VSUB(TR, TS);
Chris@10 286 }
Chris@10 287 {
Chris@10 288 V Ta, TO, Td, TP;
Chris@10 289 {
Chris@10 290 V T8, T9, Tb, Tc;
Chris@10 291 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 292 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@10 293 Ta = VSUB(T8, T9);
Chris@10 294 TO = VADD(T8, T9);
Chris@10 295 Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 296 Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
Chris@10 297 Td = VSUB(Tb, Tc);
Chris@10 298 TP = VADD(Tb, Tc);
Chris@10 299 }
Chris@10 300 Te = VFMA(LDK(KP382683432), Ta, VMUL(LDK(KP923879532), Td));
Chris@10 301 T16 = VADD(TO, TP);
Chris@10 302 Tx = VFNMS(LDK(KP382683432), Td, VMUL(LDK(KP923879532), Ta));
Chris@10 303 TQ = VSUB(TO, TP);
Chris@10 304 }
Chris@10 305 {
Chris@10 306 V T1b, T1c, T1d, T1e;
Chris@10 307 {
Chris@10 308 V T15, T18, T19, T1a;
Chris@10 309 T15 = VADD(T13, T14);
Chris@10 310 T18 = VADD(T16, T17);
Chris@10 311 T1b = VSUB(T15, T18);
Chris@10 312 STM2(&(xo[16]), T1b, ovs, &(xo[0]));
Chris@10 313 T1c = VADD(T15, T18);
Chris@10 314 STM2(&(xo[0]), T1c, ovs, &(xo[0]));
Chris@10 315 T19 = VSUB(T13, T14);
Chris@10 316 T1a = VBYI(VSUB(T17, T16));
Chris@10 317 T1d = VSUB(T19, T1a);
Chris@10 318 STM2(&(xo[24]), T1d, ovs, &(xo[0]));
Chris@10 319 T1e = VADD(T19, T1a);
Chris@10 320 STM2(&(xo[8]), T1e, ovs, &(xo[0]));
Chris@10 321 }
Chris@10 322 {
Chris@10 323 V T1f, T1g, T1h, T1i;
Chris@10 324 {
Chris@10 325 V TV, T11, T10, T12, TU, TZ;
Chris@10 326 TU = VMUL(LDK(KP707106781), VADD(TQ, TT));
Chris@10 327 TV = VADD(TN, TU);
Chris@10 328 T11 = VSUB(TN, TU);
Chris@10 329 TZ = VMUL(LDK(KP707106781), VSUB(TT, TQ));
Chris@10 330 T10 = VBYI(VADD(TY, TZ));
Chris@10 331 T12 = VBYI(VSUB(TZ, TY));
Chris@10 332 T1f = VSUB(TV, T10);
Chris@10 333 STM2(&(xo[28]), T1f, ovs, &(xo[0]));
Chris@10 334 T1g = VADD(T11, T12);
Chris@10 335 STM2(&(xo[12]), T1g, ovs, &(xo[0]));
Chris@10 336 T1h = VADD(TV, T10);
Chris@10 337 STM2(&(xo[4]), T1h, ovs, &(xo[0]));
Chris@10 338 T1i = VSUB(T11, T12);
Chris@10 339 STM2(&(xo[20]), T1i, ovs, &(xo[0]));
Chris@10 340 }
Chris@10 341 {
Chris@10 342 V Tr, TB, TA, TC;
Chris@10 343 {
Chris@10 344 V Tf, Tq, Tw, Tz;
Chris@10 345 Tf = VSUB(T7, Te);
Chris@10 346 Tq = VSUB(Tm, Tp);
Chris@10 347 Tr = VBYI(VSUB(Tf, Tq));
Chris@10 348 TB = VBYI(VADD(Tq, Tf));
Chris@10 349 Tw = VADD(Tu, Tv);
Chris@10 350 Tz = VADD(Tx, Ty);
Chris@10 351 TA = VSUB(Tw, Tz);
Chris@10 352 TC = VADD(Tw, Tz);
Chris@10 353 }
Chris@10 354 {
Chris@10 355 V T1j, T1k, T1l, T1m;
Chris@10 356 T1j = VADD(Tr, TA);
Chris@10 357 STM2(&(xo[14]), T1j, ovs, &(xo[2]));
Chris@10 358 STN2(&(xo[12]), T1g, T1j, ovs);
Chris@10 359 T1k = VSUB(TC, TB);
Chris@10 360 STM2(&(xo[30]), T1k, ovs, &(xo[2]));
Chris@10 361 STN2(&(xo[28]), T1f, T1k, ovs);
Chris@10 362 T1l = VSUB(TA, Tr);
Chris@10 363 STM2(&(xo[18]), T1l, ovs, &(xo[2]));
Chris@10 364 STN2(&(xo[16]), T1b, T1l, ovs);
Chris@10 365 T1m = VADD(TB, TC);
Chris@10 366 STM2(&(xo[2]), T1m, ovs, &(xo[2]));
Chris@10 367 STN2(&(xo[0]), T1c, T1m, ovs);
Chris@10 368 }
Chris@10 369 }
Chris@10 370 {
Chris@10 371 V TF, TJ, TI, TK;
Chris@10 372 {
Chris@10 373 V TD, TE, TG, TH;
Chris@10 374 TD = VSUB(Tu, Tv);
Chris@10 375 TE = VADD(Te, T7);
Chris@10 376 TF = VADD(TD, TE);
Chris@10 377 TJ = VSUB(TD, TE);
Chris@10 378 TG = VADD(Tp, Tm);
Chris@10 379 TH = VSUB(Ty, Tx);
Chris@10 380 TI = VBYI(VADD(TG, TH));
Chris@10 381 TK = VBYI(VSUB(TH, TG));
Chris@10 382 }
Chris@10 383 {
Chris@10 384 V T1n, T1o, T1p, T1q;
Chris@10 385 T1n = VSUB(TF, TI);
Chris@10 386 STM2(&(xo[26]), T1n, ovs, &(xo[2]));
Chris@10 387 STN2(&(xo[24]), T1d, T1n, ovs);
Chris@10 388 T1o = VADD(TJ, TK);
Chris@10 389 STM2(&(xo[10]), T1o, ovs, &(xo[2]));
Chris@10 390 STN2(&(xo[8]), T1e, T1o, ovs);
Chris@10 391 T1p = VADD(TF, TI);
Chris@10 392 STM2(&(xo[6]), T1p, ovs, &(xo[2]));
Chris@10 393 STN2(&(xo[4]), T1h, T1p, ovs);
Chris@10 394 T1q = VSUB(TJ, TK);
Chris@10 395 STM2(&(xo[22]), T1q, ovs, &(xo[2]));
Chris@10 396 STN2(&(xo[20]), T1i, T1q, ovs);
Chris@10 397 }
Chris@10 398 }
Chris@10 399 }
Chris@10 400 }
Chris@10 401 }
Chris@10 402 }
Chris@10 403 VLEAVE();
Chris@10 404 }
Chris@10 405
Chris@10 406 static const kdft_desc desc = { 16, XSIMD_STRING("n2fv_16"), {68, 8, 4, 0}, &GENUS, 0, 2, 0, 0 };
Chris@10 407
Chris@10 408 void XSIMD(codelet_n2fv_16) (planner *p) {
Chris@10 409 X(kdft_register) (p, n2fv_16, &desc);
Chris@10 410 }
Chris@10 411
Chris@10 412 #endif /* HAVE_FMA */