annotate src/fftw-3.3.3/dft/simd/common/n2fv_12.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:37:22 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n2fv_12 -with-ostride 2 -include n2f.h -store-multiple 2 */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 48 FP additions, 20 FP multiplications,
Chris@10 32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
Chris@10 33 * 61 stack variables, 2 constants, and 30 memory accesses
Chris@10 34 */
Chris@10 35 #include "n2f.h"
Chris@10 36
Chris@10 37 static void n2fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 41 {
Chris@10 42 INT i;
Chris@10 43 const R *xi;
Chris@10 44 R *xo;
Chris@10 45 xi = ri;
Chris@10 46 xo = ro;
Chris@10 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
Chris@10 48 V T1, T6, Tk, Tn, Tc, Td, Tf, Tr, T4, Ts, T9, Tg, Te, Tl;
Chris@10 49 {
Chris@10 50 V T2, T3, T7, T8;
Chris@10 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@10 56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 57 Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 58 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@10 59 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@10 60 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 61 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 62 Tr = VSUB(T3, T2);
Chris@10 63 T4 = VADD(T2, T3);
Chris@10 64 Ts = VSUB(T8, T7);
Chris@10 65 T9 = VADD(T7, T8);
Chris@10 66 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 67 }
Chris@10 68 Te = VSUB(Tc, Td);
Chris@10 69 Tl = VADD(Td, Tc);
Chris@10 70 {
Chris@10 71 V T5, TF, TB, Tt, Ta, TG, Th, To, Tm, TI;
Chris@10 72 T5 = VFNMS(LDK(KP500000000), T4, T1);
Chris@10 73 TF = VADD(T1, T4);
Chris@10 74 TB = VADD(Tr, Ts);
Chris@10 75 Tt = VSUB(Tr, Ts);
Chris@10 76 Ta = VFNMS(LDK(KP500000000), T9, T6);
Chris@10 77 TG = VADD(T6, T9);
Chris@10 78 Th = VSUB(Tf, Tg);
Chris@10 79 To = VADD(Tf, Tg);
Chris@10 80 Tm = VFNMS(LDK(KP500000000), Tl, Tk);
Chris@10 81 TI = VADD(Tk, Tl);
Chris@10 82 {
Chris@10 83 V TH, TL, Tb, Tx, TJ, Tp, Ti, TA;
Chris@10 84 TH = VSUB(TF, TG);
Chris@10 85 TL = VADD(TF, TG);
Chris@10 86 Tb = VSUB(T5, Ta);
Chris@10 87 Tx = VADD(T5, Ta);
Chris@10 88 TJ = VADD(Tn, To);
Chris@10 89 Tp = VFNMS(LDK(KP500000000), To, Tn);
Chris@10 90 Ti = VADD(Te, Th);
Chris@10 91 TA = VSUB(Te, Th);
Chris@10 92 {
Chris@10 93 V Tq, Ty, TK, TM;
Chris@10 94 Tq = VSUB(Tm, Tp);
Chris@10 95 Ty = VADD(Tm, Tp);
Chris@10 96 TK = VSUB(TI, TJ);
Chris@10 97 TM = VADD(TI, TJ);
Chris@10 98 {
Chris@10 99 V TC, TE, Tj, Tv;
Chris@10 100 TC = VMUL(LDK(KP866025403), VSUB(TA, TB));
Chris@10 101 TE = VMUL(LDK(KP866025403), VADD(TB, TA));
Chris@10 102 Tj = VFMA(LDK(KP866025403), Ti, Tb);
Chris@10 103 Tv = VFNMS(LDK(KP866025403), Ti, Tb);
Chris@10 104 {
Chris@10 105 V Tz, TD, Tu, Tw;
Chris@10 106 Tz = VSUB(Tx, Ty);
Chris@10 107 TD = VADD(Tx, Ty);
Chris@10 108 Tu = VFNMS(LDK(KP866025403), Tt, Tq);
Chris@10 109 Tw = VFMA(LDK(KP866025403), Tt, Tq);
Chris@10 110 {
Chris@10 111 V TN, TO, TP, TQ;
Chris@10 112 TN = VADD(TL, TM);
Chris@10 113 STM2(&(xo[0]), TN, ovs, &(xo[0]));
Chris@10 114 TO = VSUB(TL, TM);
Chris@10 115 STM2(&(xo[12]), TO, ovs, &(xo[0]));
Chris@10 116 TP = VFMAI(TK, TH);
Chris@10 117 STM2(&(xo[6]), TP, ovs, &(xo[2]));
Chris@10 118 TQ = VFNMSI(TK, TH);
Chris@10 119 STM2(&(xo[18]), TQ, ovs, &(xo[2]));
Chris@10 120 {
Chris@10 121 V TR, TS, TT, TU;
Chris@10 122 TR = VFMAI(TE, TD);
Chris@10 123 STM2(&(xo[8]), TR, ovs, &(xo[0]));
Chris@10 124 TS = VFNMSI(TE, TD);
Chris@10 125 STM2(&(xo[16]), TS, ovs, &(xo[0]));
Chris@10 126 STN2(&(xo[16]), TS, TQ, ovs);
Chris@10 127 TT = VFNMSI(TC, Tz);
Chris@10 128 STM2(&(xo[20]), TT, ovs, &(xo[0]));
Chris@10 129 TU = VFMAI(TC, Tz);
Chris@10 130 STM2(&(xo[4]), TU, ovs, &(xo[0]));
Chris@10 131 STN2(&(xo[4]), TU, TP, ovs);
Chris@10 132 {
Chris@10 133 V TV, TW, TX, TY;
Chris@10 134 TV = VFNMSI(Tw, Tv);
Chris@10 135 STM2(&(xo[10]), TV, ovs, &(xo[2]));
Chris@10 136 STN2(&(xo[8]), TR, TV, ovs);
Chris@10 137 TW = VFMAI(Tw, Tv);
Chris@10 138 STM2(&(xo[14]), TW, ovs, &(xo[2]));
Chris@10 139 STN2(&(xo[12]), TO, TW, ovs);
Chris@10 140 TX = VFMAI(Tu, Tj);
Chris@10 141 STM2(&(xo[22]), TX, ovs, &(xo[2]));
Chris@10 142 STN2(&(xo[20]), TT, TX, ovs);
Chris@10 143 TY = VFNMSI(Tu, Tj);
Chris@10 144 STM2(&(xo[2]), TY, ovs, &(xo[2]));
Chris@10 145 STN2(&(xo[0]), TN, TY, ovs);
Chris@10 146 }
Chris@10 147 }
Chris@10 148 }
Chris@10 149 }
Chris@10 150 }
Chris@10 151 }
Chris@10 152 }
Chris@10 153 }
Chris@10 154 }
Chris@10 155 }
Chris@10 156 VLEAVE();
Chris@10 157 }
Chris@10 158
Chris@10 159 static const kdft_desc desc = { 12, XSIMD_STRING("n2fv_12"), {30, 2, 18, 0}, &GENUS, 0, 2, 0, 0 };
Chris@10 160
Chris@10 161 void XSIMD(codelet_n2fv_12) (planner *p) {
Chris@10 162 X(kdft_register) (p, n2fv_12, &desc);
Chris@10 163 }
Chris@10 164
Chris@10 165 #else /* HAVE_FMA */
Chris@10 166
Chris@10 167 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n2fv_12 -with-ostride 2 -include n2f.h -store-multiple 2 */
Chris@10 168
Chris@10 169 /*
Chris@10 170 * This function contains 48 FP additions, 8 FP multiplications,
Chris@10 171 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
Chris@10 172 * 33 stack variables, 2 constants, and 30 memory accesses
Chris@10 173 */
Chris@10 174 #include "n2f.h"
Chris@10 175
Chris@10 176 static void n2fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 177 {
Chris@10 178 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 179 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 180 {
Chris@10 181 INT i;
Chris@10 182 const R *xi;
Chris@10 183 R *xo;
Chris@10 184 xi = ri;
Chris@10 185 xo = ro;
Chris@10 186 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
Chris@10 187 V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu;
Chris@10 188 {
Chris@10 189 V T1, T6, T4, Tw, T9, Tx;
Chris@10 190 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 191 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 192 {
Chris@10 193 V T2, T3, T7, T8;
Chris@10 194 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 195 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 196 T4 = VADD(T2, T3);
Chris@10 197 Tw = VSUB(T3, T2);
Chris@10 198 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@10 199 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 200 T9 = VADD(T7, T8);
Chris@10 201 Tx = VSUB(T8, T7);
Chris@10 202 }
Chris@10 203 T5 = VADD(T1, T4);
Chris@10 204 Ta = VADD(T6, T9);
Chris@10 205 TJ = VADD(Tw, Tx);
Chris@10 206 Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx));
Chris@10 207 Tq = VFNMS(LDK(KP500000000), T9, T6);
Chris@10 208 Tp = VFNMS(LDK(KP500000000), T4, T1);
Chris@10 209 }
Chris@10 210 {
Chris@10 211 V Tc, Th, Tf, Ts, Tk, Tt;
Chris@10 212 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 213 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@10 214 {
Chris@10 215 V Td, Te, Ti, Tj;
Chris@10 216 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 217 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@10 218 Tf = VADD(Td, Te);
Chris@10 219 Ts = VSUB(Te, Td);
Chris@10 220 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 221 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 222 Tk = VADD(Ti, Tj);
Chris@10 223 Tt = VSUB(Tj, Ti);
Chris@10 224 }
Chris@10 225 Tg = VADD(Tc, Tf);
Chris@10 226 Tl = VADD(Th, Tk);
Chris@10 227 TI = VADD(Ts, Tt);
Chris@10 228 TA = VFNMS(LDK(KP500000000), Tk, Th);
Chris@10 229 Tz = VFNMS(LDK(KP500000000), Tf, Tc);
Chris@10 230 Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt));
Chris@10 231 }
Chris@10 232 {
Chris@10 233 V TN, TO, TP, TQ, TR, TS;
Chris@10 234 {
Chris@10 235 V Tb, Tm, Tn, To;
Chris@10 236 Tb = VSUB(T5, Ta);
Chris@10 237 Tm = VBYI(VSUB(Tg, Tl));
Chris@10 238 TN = VSUB(Tb, Tm);
Chris@10 239 STM2(&(xo[18]), TN, ovs, &(xo[2]));
Chris@10 240 TO = VADD(Tb, Tm);
Chris@10 241 STM2(&(xo[6]), TO, ovs, &(xo[2]));
Chris@10 242 Tn = VADD(T5, Ta);
Chris@10 243 To = VADD(Tg, Tl);
Chris@10 244 TP = VSUB(Tn, To);
Chris@10 245 STM2(&(xo[12]), TP, ovs, &(xo[0]));
Chris@10 246 TQ = VADD(Tn, To);
Chris@10 247 STM2(&(xo[0]), TQ, ovs, &(xo[0]));
Chris@10 248 }
Chris@10 249 {
Chris@10 250 V Tv, TE, TC, TD, Tr, TB, TT, TU;
Chris@10 251 Tr = VSUB(Tp, Tq);
Chris@10 252 Tv = VSUB(Tr, Tu);
Chris@10 253 TE = VADD(Tr, Tu);
Chris@10 254 TB = VSUB(Tz, TA);
Chris@10 255 TC = VBYI(VADD(Ty, TB));
Chris@10 256 TD = VBYI(VSUB(Ty, TB));
Chris@10 257 TR = VSUB(Tv, TC);
Chris@10 258 STM2(&(xo[10]), TR, ovs, &(xo[2]));
Chris@10 259 TS = VSUB(TE, TD);
Chris@10 260 STM2(&(xo[22]), TS, ovs, &(xo[2]));
Chris@10 261 TT = VADD(TC, Tv);
Chris@10 262 STM2(&(xo[14]), TT, ovs, &(xo[2]));
Chris@10 263 STN2(&(xo[12]), TP, TT, ovs);
Chris@10 264 TU = VADD(TD, TE);
Chris@10 265 STM2(&(xo[2]), TU, ovs, &(xo[2]));
Chris@10 266 STN2(&(xo[0]), TQ, TU, ovs);
Chris@10 267 }
Chris@10 268 {
Chris@10 269 V TK, TM, TH, TL, TF, TG;
Chris@10 270 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ)));
Chris@10 271 TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI)));
Chris@10 272 TF = VADD(Tp, Tq);
Chris@10 273 TG = VADD(Tz, TA);
Chris@10 274 TH = VSUB(TF, TG);
Chris@10 275 TL = VADD(TF, TG);
Chris@10 276 {
Chris@10 277 V TV, TW, TX, TY;
Chris@10 278 TV = VSUB(TH, TK);
Chris@10 279 STM2(&(xo[20]), TV, ovs, &(xo[0]));
Chris@10 280 STN2(&(xo[20]), TV, TS, ovs);
Chris@10 281 TW = VADD(TL, TM);
Chris@10 282 STM2(&(xo[8]), TW, ovs, &(xo[0]));
Chris@10 283 STN2(&(xo[8]), TW, TR, ovs);
Chris@10 284 TX = VADD(TH, TK);
Chris@10 285 STM2(&(xo[4]), TX, ovs, &(xo[0]));
Chris@10 286 STN2(&(xo[4]), TX, TO, ovs);
Chris@10 287 TY = VSUB(TL, TM);
Chris@10 288 STM2(&(xo[16]), TY, ovs, &(xo[0]));
Chris@10 289 STN2(&(xo[16]), TY, TN, ovs);
Chris@10 290 }
Chris@10 291 }
Chris@10 292 }
Chris@10 293 }
Chris@10 294 }
Chris@10 295 VLEAVE();
Chris@10 296 }
Chris@10 297
Chris@10 298 static const kdft_desc desc = { 12, XSIMD_STRING("n2fv_12"), {44, 4, 4, 0}, &GENUS, 0, 2, 0, 0 };
Chris@10 299
Chris@10 300 void XSIMD(codelet_n2fv_12) (planner *p) {
Chris@10 301 X(kdft_register) (p, n2fv_12, &desc);
Chris@10 302 }
Chris@10 303
Chris@10 304 #endif /* HAVE_FMA */