annotate src/fftw-3.3.3/dft/simd/common/n2fv_10.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:37:22 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name n2fv_10 -with-ostride 2 -include n2f.h -store-multiple 2 */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 42 FP additions, 22 FP multiplications,
Chris@10 32 * (or, 24 additions, 4 multiplications, 18 fused multiply/add),
Chris@10 33 * 53 stack variables, 4 constants, and 25 memory accesses
Chris@10 34 */
Chris@10 35 #include "n2f.h"
Chris@10 36
Chris@10 37 static void n2fv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 43 {
Chris@10 44 INT i;
Chris@10 45 const R *xi;
Chris@10 46 R *xo;
Chris@10 47 xi = ri;
Chris@10 48 xo = ro;
Chris@10 49 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
Chris@10 50 V Tb, Tr, T3, Ts, T6, Tw, Tg, Tt, T9, Tc, T1, T2;
Chris@10 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 52 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 53 {
Chris@10 54 V T4, T5, Te, Tf, T7, T8;
Chris@10 55 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 56 T5 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 57 Te = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 58 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 59 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 60 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 61 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 62 Tr = VADD(T1, T2);
Chris@10 63 T3 = VSUB(T1, T2);
Chris@10 64 Ts = VADD(T4, T5);
Chris@10 65 T6 = VSUB(T4, T5);
Chris@10 66 Tw = VADD(Te, Tf);
Chris@10 67 Tg = VSUB(Te, Tf);
Chris@10 68 Tt = VADD(T7, T8);
Chris@10 69 T9 = VSUB(T7, T8);
Chris@10 70 Tc = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@10 71 }
Chris@10 72 {
Chris@10 73 V TD, Tu, Tm, Ta, Td, Tv;
Chris@10 74 TD = VSUB(Ts, Tt);
Chris@10 75 Tu = VADD(Ts, Tt);
Chris@10 76 Tm = VSUB(T6, T9);
Chris@10 77 Ta = VADD(T6, T9);
Chris@10 78 Td = VSUB(Tb, Tc);
Chris@10 79 Tv = VADD(Tb, Tc);
Chris@10 80 {
Chris@10 81 V TC, Tx, Tn, Th;
Chris@10 82 TC = VSUB(Tv, Tw);
Chris@10 83 Tx = VADD(Tv, Tw);
Chris@10 84 Tn = VSUB(Td, Tg);
Chris@10 85 Th = VADD(Td, Tg);
Chris@10 86 {
Chris@10 87 V Ty, TA, TE, TG, Ti, Tk, To, Tq;
Chris@10 88 Ty = VADD(Tu, Tx);
Chris@10 89 TA = VSUB(Tu, Tx);
Chris@10 90 TE = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TD, TC));
Chris@10 91 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TC, TD));
Chris@10 92 Ti = VADD(Ta, Th);
Chris@10 93 Tk = VSUB(Ta, Th);
Chris@10 94 To = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, Tm));
Chris@10 95 Tq = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tm, Tn));
Chris@10 96 {
Chris@10 97 V Tz, TH, Tj, TI;
Chris@10 98 Tz = VFNMS(LDK(KP250000000), Ty, Tr);
Chris@10 99 TH = VADD(Tr, Ty);
Chris@10 100 STM2(&(xo[0]), TH, ovs, &(xo[0]));
Chris@10 101 Tj = VFNMS(LDK(KP250000000), Ti, T3);
Chris@10 102 TI = VADD(T3, Ti);
Chris@10 103 STM2(&(xo[10]), TI, ovs, &(xo[2]));
Chris@10 104 {
Chris@10 105 V TB, TF, Tl, Tp;
Chris@10 106 TB = VFNMS(LDK(KP559016994), TA, Tz);
Chris@10 107 TF = VFMA(LDK(KP559016994), TA, Tz);
Chris@10 108 Tl = VFMA(LDK(KP559016994), Tk, Tj);
Chris@10 109 Tp = VFNMS(LDK(KP559016994), Tk, Tj);
Chris@10 110 {
Chris@10 111 V TJ, TK, TL, TM;
Chris@10 112 TJ = VFMAI(TG, TF);
Chris@10 113 STM2(&(xo[8]), TJ, ovs, &(xo[0]));
Chris@10 114 STN2(&(xo[8]), TJ, TI, ovs);
Chris@10 115 TK = VFNMSI(TG, TF);
Chris@10 116 STM2(&(xo[12]), TK, ovs, &(xo[0]));
Chris@10 117 TL = VFNMSI(TE, TB);
Chris@10 118 STM2(&(xo[16]), TL, ovs, &(xo[0]));
Chris@10 119 TM = VFMAI(TE, TB);
Chris@10 120 STM2(&(xo[4]), TM, ovs, &(xo[0]));
Chris@10 121 {
Chris@10 122 V TN, TO, TP, TQ;
Chris@10 123 TN = VFNMSI(Tq, Tp);
Chris@10 124 STM2(&(xo[6]), TN, ovs, &(xo[2]));
Chris@10 125 STN2(&(xo[4]), TM, TN, ovs);
Chris@10 126 TO = VFMAI(Tq, Tp);
Chris@10 127 STM2(&(xo[14]), TO, ovs, &(xo[2]));
Chris@10 128 STN2(&(xo[12]), TK, TO, ovs);
Chris@10 129 TP = VFMAI(To, Tl);
Chris@10 130 STM2(&(xo[18]), TP, ovs, &(xo[2]));
Chris@10 131 STN2(&(xo[16]), TL, TP, ovs);
Chris@10 132 TQ = VFNMSI(To, Tl);
Chris@10 133 STM2(&(xo[2]), TQ, ovs, &(xo[2]));
Chris@10 134 STN2(&(xo[0]), TH, TQ, ovs);
Chris@10 135 }
Chris@10 136 }
Chris@10 137 }
Chris@10 138 }
Chris@10 139 }
Chris@10 140 }
Chris@10 141 }
Chris@10 142 }
Chris@10 143 }
Chris@10 144 VLEAVE();
Chris@10 145 }
Chris@10 146
Chris@10 147 static const kdft_desc desc = { 10, XSIMD_STRING("n2fv_10"), {24, 4, 18, 0}, &GENUS, 0, 2, 0, 0 };
Chris@10 148
Chris@10 149 void XSIMD(codelet_n2fv_10) (planner *p) {
Chris@10 150 X(kdft_register) (p, n2fv_10, &desc);
Chris@10 151 }
Chris@10 152
Chris@10 153 #else /* HAVE_FMA */
Chris@10 154
Chris@10 155 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name n2fv_10 -with-ostride 2 -include n2f.h -store-multiple 2 */
Chris@10 156
Chris@10 157 /*
Chris@10 158 * This function contains 42 FP additions, 12 FP multiplications,
Chris@10 159 * (or, 36 additions, 6 multiplications, 6 fused multiply/add),
Chris@10 160 * 36 stack variables, 4 constants, and 25 memory accesses
Chris@10 161 */
Chris@10 162 #include "n2f.h"
Chris@10 163
Chris@10 164 static void n2fv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 165 {
Chris@10 166 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 167 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 168 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 169 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 170 {
Chris@10 171 INT i;
Chris@10 172 const R *xi;
Chris@10 173 R *xo;
Chris@10 174 xi = ri;
Chris@10 175 xo = ro;
Chris@10 176 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
Chris@10 177 V Ti, Ty, Tm, Tn, Tw, Tt, Tz, TA, TB, T7, Te, Tj, Tg, Th;
Chris@10 178 Tg = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 179 Th = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 180 Ti = VSUB(Tg, Th);
Chris@10 181 Ty = VADD(Tg, Th);
Chris@10 182 {
Chris@10 183 V T3, Tu, Td, Ts, T6, Tv, Ta, Tr;
Chris@10 184 {
Chris@10 185 V T1, T2, Tb, Tc;
Chris@10 186 T1 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 187 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 188 T3 = VSUB(T1, T2);
Chris@10 189 Tu = VADD(T1, T2);
Chris@10 190 Tb = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 191 Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 192 Td = VSUB(Tb, Tc);
Chris@10 193 Ts = VADD(Tb, Tc);
Chris@10 194 }
Chris@10 195 {
Chris@10 196 V T4, T5, T8, T9;
Chris@10 197 T4 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 198 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 199 T6 = VSUB(T4, T5);
Chris@10 200 Tv = VADD(T4, T5);
Chris@10 201 T8 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 202 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@10 203 Ta = VSUB(T8, T9);
Chris@10 204 Tr = VADD(T8, T9);
Chris@10 205 }
Chris@10 206 Tm = VSUB(T3, T6);
Chris@10 207 Tn = VSUB(Ta, Td);
Chris@10 208 Tw = VSUB(Tu, Tv);
Chris@10 209 Tt = VSUB(Tr, Ts);
Chris@10 210 Tz = VADD(Tu, Tv);
Chris@10 211 TA = VADD(Tr, Ts);
Chris@10 212 TB = VADD(Tz, TA);
Chris@10 213 T7 = VADD(T3, T6);
Chris@10 214 Te = VADD(Ta, Td);
Chris@10 215 Tj = VADD(T7, Te);
Chris@10 216 }
Chris@10 217 {
Chris@10 218 V TH, TI, TK, TL, TM;
Chris@10 219 TH = VADD(Ti, Tj);
Chris@10 220 STM2(&(xo[10]), TH, ovs, &(xo[2]));
Chris@10 221 TI = VADD(Ty, TB);
Chris@10 222 STM2(&(xo[0]), TI, ovs, &(xo[0]));
Chris@10 223 {
Chris@10 224 V To, Tq, Tl, Tp, Tf, Tk, TJ;
Chris@10 225 To = VBYI(VFMA(LDK(KP951056516), Tm, VMUL(LDK(KP587785252), Tn)));
Chris@10 226 Tq = VBYI(VFNMS(LDK(KP587785252), Tm, VMUL(LDK(KP951056516), Tn)));
Chris@10 227 Tf = VMUL(LDK(KP559016994), VSUB(T7, Te));
Chris@10 228 Tk = VFNMS(LDK(KP250000000), Tj, Ti);
Chris@10 229 Tl = VADD(Tf, Tk);
Chris@10 230 Tp = VSUB(Tk, Tf);
Chris@10 231 TJ = VSUB(Tl, To);
Chris@10 232 STM2(&(xo[2]), TJ, ovs, &(xo[2]));
Chris@10 233 STN2(&(xo[0]), TI, TJ, ovs);
Chris@10 234 TK = VADD(Tq, Tp);
Chris@10 235 STM2(&(xo[14]), TK, ovs, &(xo[2]));
Chris@10 236 TL = VADD(To, Tl);
Chris@10 237 STM2(&(xo[18]), TL, ovs, &(xo[2]));
Chris@10 238 TM = VSUB(Tp, Tq);
Chris@10 239 STM2(&(xo[6]), TM, ovs, &(xo[2]));
Chris@10 240 }
Chris@10 241 {
Chris@10 242 V Tx, TF, TE, TG, TC, TD;
Chris@10 243 Tx = VBYI(VFNMS(LDK(KP587785252), Tw, VMUL(LDK(KP951056516), Tt)));
Chris@10 244 TF = VBYI(VFMA(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tt)));
Chris@10 245 TC = VFNMS(LDK(KP250000000), TB, Ty);
Chris@10 246 TD = VMUL(LDK(KP559016994), VSUB(Tz, TA));
Chris@10 247 TE = VSUB(TC, TD);
Chris@10 248 TG = VADD(TD, TC);
Chris@10 249 {
Chris@10 250 V TN, TO, TP, TQ;
Chris@10 251 TN = VADD(Tx, TE);
Chris@10 252 STM2(&(xo[4]), TN, ovs, &(xo[0]));
Chris@10 253 STN2(&(xo[4]), TN, TM, ovs);
Chris@10 254 TO = VSUB(TG, TF);
Chris@10 255 STM2(&(xo[12]), TO, ovs, &(xo[0]));
Chris@10 256 STN2(&(xo[12]), TO, TK, ovs);
Chris@10 257 TP = VSUB(TE, Tx);
Chris@10 258 STM2(&(xo[16]), TP, ovs, &(xo[0]));
Chris@10 259 STN2(&(xo[16]), TP, TL, ovs);
Chris@10 260 TQ = VADD(TF, TG);
Chris@10 261 STM2(&(xo[8]), TQ, ovs, &(xo[0]));
Chris@10 262 STN2(&(xo[8]), TQ, TH, ovs);
Chris@10 263 }
Chris@10 264 }
Chris@10 265 }
Chris@10 266 }
Chris@10 267 }
Chris@10 268 VLEAVE();
Chris@10 269 }
Chris@10 270
Chris@10 271 static const kdft_desc desc = { 10, XSIMD_STRING("n2fv_10"), {36, 6, 6, 0}, &GENUS, 0, 2, 0, 0 };
Chris@10 272
Chris@10 273 void XSIMD(codelet_n2fv_10) (planner *p) {
Chris@10 274 X(kdft_register) (p, n2fv_10, &desc);
Chris@10 275 }
Chris@10 276
Chris@10 277 #endif /* HAVE_FMA */