Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:37:30 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n2bv_12 -with-ostride 2 -include n2b.h -store-multiple 2 */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 48 FP additions, 20 FP multiplications,
|
Chris@10
|
32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
|
Chris@10
|
33 * 61 stack variables, 2 constants, and 30 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "n2b.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void n2bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
41 {
|
Chris@10
|
42 INT i;
|
Chris@10
|
43 const R *xi;
|
Chris@10
|
44 R *xo;
|
Chris@10
|
45 xi = ii;
|
Chris@10
|
46 xo = io;
|
Chris@10
|
47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
|
Chris@10
|
48 V T1, T6, Tc, Th, Td, Te, Ti, Tz, T4, TA, T9, Tj, Tf, Tw;
|
Chris@10
|
49 {
|
Chris@10
|
50 V T2, T3, T7, T8;
|
Chris@10
|
51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
Chris@10
|
52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
Chris@10
|
53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
Chris@10
|
54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
Chris@10
|
55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
|
Chris@10
|
56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
Chris@10
|
57 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
58 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
59 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
60 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
61 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
62 Tz = VSUB(T2, T3);
|
Chris@10
|
63 T4 = VADD(T2, T3);
|
Chris@10
|
64 TA = VSUB(T7, T8);
|
Chris@10
|
65 T9 = VADD(T7, T8);
|
Chris@10
|
66 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
67 }
|
Chris@10
|
68 Tf = VADD(Td, Te);
|
Chris@10
|
69 Tw = VSUB(Td, Te);
|
Chris@10
|
70 {
|
Chris@10
|
71 V T5, Tp, TJ, TB, Ta, Tq, Tk, Tx, Tg, Ts;
|
Chris@10
|
72 T5 = VADD(T1, T4);
|
Chris@10
|
73 Tp = VFNMS(LDK(KP500000000), T4, T1);
|
Chris@10
|
74 TJ = VSUB(Tz, TA);
|
Chris@10
|
75 TB = VADD(Tz, TA);
|
Chris@10
|
76 Ta = VADD(T6, T9);
|
Chris@10
|
77 Tq = VFNMS(LDK(KP500000000), T9, T6);
|
Chris@10
|
78 Tk = VADD(Ti, Tj);
|
Chris@10
|
79 Tx = VSUB(Tj, Ti);
|
Chris@10
|
80 Tg = VADD(Tc, Tf);
|
Chris@10
|
81 Ts = VFNMS(LDK(KP500000000), Tf, Tc);
|
Chris@10
|
82 {
|
Chris@10
|
83 V Tr, TF, Tb, Tn, TG, Ty, Tl, Tt;
|
Chris@10
|
84 Tr = VADD(Tp, Tq);
|
Chris@10
|
85 TF = VSUB(Tp, Tq);
|
Chris@10
|
86 Tb = VSUB(T5, Ta);
|
Chris@10
|
87 Tn = VADD(T5, Ta);
|
Chris@10
|
88 TG = VADD(Tw, Tx);
|
Chris@10
|
89 Ty = VSUB(Tw, Tx);
|
Chris@10
|
90 Tl = VADD(Th, Tk);
|
Chris@10
|
91 Tt = VFNMS(LDK(KP500000000), Tk, Th);
|
Chris@10
|
92 {
|
Chris@10
|
93 V TC, TE, TH, TL, Tu, TI, Tm, To;
|
Chris@10
|
94 TC = VMUL(LDK(KP866025403), VSUB(Ty, TB));
|
Chris@10
|
95 TE = VMUL(LDK(KP866025403), VADD(TB, Ty));
|
Chris@10
|
96 TH = VFNMS(LDK(KP866025403), TG, TF);
|
Chris@10
|
97 TL = VFMA(LDK(KP866025403), TG, TF);
|
Chris@10
|
98 Tu = VADD(Ts, Tt);
|
Chris@10
|
99 TI = VSUB(Ts, Tt);
|
Chris@10
|
100 Tm = VSUB(Tg, Tl);
|
Chris@10
|
101 To = VADD(Tg, Tl);
|
Chris@10
|
102 {
|
Chris@10
|
103 V TK, TM, Tv, TD;
|
Chris@10
|
104 TK = VFMA(LDK(KP866025403), TJ, TI);
|
Chris@10
|
105 TM = VFNMS(LDK(KP866025403), TJ, TI);
|
Chris@10
|
106 Tv = VSUB(Tr, Tu);
|
Chris@10
|
107 TD = VADD(Tr, Tu);
|
Chris@10
|
108 {
|
Chris@10
|
109 V TN, TO, TP, TQ;
|
Chris@10
|
110 TN = VADD(Tn, To);
|
Chris@10
|
111 STM2(&(xo[0]), TN, ovs, &(xo[0]));
|
Chris@10
|
112 TO = VSUB(Tn, To);
|
Chris@10
|
113 STM2(&(xo[12]), TO, ovs, &(xo[0]));
|
Chris@10
|
114 TP = VFMAI(Tm, Tb);
|
Chris@10
|
115 STM2(&(xo[18]), TP, ovs, &(xo[2]));
|
Chris@10
|
116 TQ = VFNMSI(Tm, Tb);
|
Chris@10
|
117 STM2(&(xo[6]), TQ, ovs, &(xo[2]));
|
Chris@10
|
118 {
|
Chris@10
|
119 V TR, TS, TT, TU;
|
Chris@10
|
120 TR = VFMAI(TM, TL);
|
Chris@10
|
121 STM2(&(xo[10]), TR, ovs, &(xo[2]));
|
Chris@10
|
122 TS = VFNMSI(TM, TL);
|
Chris@10
|
123 STM2(&(xo[14]), TS, ovs, &(xo[2]));
|
Chris@10
|
124 STN2(&(xo[12]), TO, TS, ovs);
|
Chris@10
|
125 TT = VFNMSI(TK, TH);
|
Chris@10
|
126 STM2(&(xo[22]), TT, ovs, &(xo[2]));
|
Chris@10
|
127 TU = VFMAI(TK, TH);
|
Chris@10
|
128 STM2(&(xo[2]), TU, ovs, &(xo[2]));
|
Chris@10
|
129 STN2(&(xo[0]), TN, TU, ovs);
|
Chris@10
|
130 {
|
Chris@10
|
131 V TV, TW, TX, TY;
|
Chris@10
|
132 TV = VFNMSI(TE, TD);
|
Chris@10
|
133 STM2(&(xo[16]), TV, ovs, &(xo[0]));
|
Chris@10
|
134 STN2(&(xo[16]), TV, TP, ovs);
|
Chris@10
|
135 TW = VFMAI(TE, TD);
|
Chris@10
|
136 STM2(&(xo[8]), TW, ovs, &(xo[0]));
|
Chris@10
|
137 STN2(&(xo[8]), TW, TR, ovs);
|
Chris@10
|
138 TX = VFMAI(TC, Tv);
|
Chris@10
|
139 STM2(&(xo[4]), TX, ovs, &(xo[0]));
|
Chris@10
|
140 STN2(&(xo[4]), TX, TQ, ovs);
|
Chris@10
|
141 TY = VFNMSI(TC, Tv);
|
Chris@10
|
142 STM2(&(xo[20]), TY, ovs, &(xo[0]));
|
Chris@10
|
143 STN2(&(xo[20]), TY, TT, ovs);
|
Chris@10
|
144 }
|
Chris@10
|
145 }
|
Chris@10
|
146 }
|
Chris@10
|
147 }
|
Chris@10
|
148 }
|
Chris@10
|
149 }
|
Chris@10
|
150 }
|
Chris@10
|
151 }
|
Chris@10
|
152 }
|
Chris@10
|
153 VLEAVE();
|
Chris@10
|
154 }
|
Chris@10
|
155
|
Chris@10
|
156 static const kdft_desc desc = { 12, XSIMD_STRING("n2bv_12"), {30, 2, 18, 0}, &GENUS, 0, 2, 0, 0 };
|
Chris@10
|
157
|
Chris@10
|
158 void XSIMD(codelet_n2bv_12) (planner *p) {
|
Chris@10
|
159 X(kdft_register) (p, n2bv_12, &desc);
|
Chris@10
|
160 }
|
Chris@10
|
161
|
Chris@10
|
162 #else /* HAVE_FMA */
|
Chris@10
|
163
|
Chris@10
|
164 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n2bv_12 -with-ostride 2 -include n2b.h -store-multiple 2 */
|
Chris@10
|
165
|
Chris@10
|
166 /*
|
Chris@10
|
167 * This function contains 48 FP additions, 8 FP multiplications,
|
Chris@10
|
168 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
|
Chris@10
|
169 * 33 stack variables, 2 constants, and 30 memory accesses
|
Chris@10
|
170 */
|
Chris@10
|
171 #include "n2b.h"
|
Chris@10
|
172
|
Chris@10
|
173 static void n2bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
Chris@10
|
174 {
|
Chris@10
|
175 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
176 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
177 {
|
Chris@10
|
178 INT i;
|
Chris@10
|
179 const R *xi;
|
Chris@10
|
180 R *xo;
|
Chris@10
|
181 xi = ii;
|
Chris@10
|
182 xo = io;
|
Chris@10
|
183 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
|
Chris@10
|
184 V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts;
|
Chris@10
|
185 {
|
Chris@10
|
186 V T1, T6, T4, Tk, T9, Tl;
|
Chris@10
|
187 T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
Chris@10
|
188 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
Chris@10
|
189 {
|
Chris@10
|
190 V T2, T3, T7, T8;
|
Chris@10
|
191 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
Chris@10
|
192 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
Chris@10
|
193 T4 = VADD(T2, T3);
|
Chris@10
|
194 Tk = VSUB(T2, T3);
|
Chris@10
|
195 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
|
Chris@10
|
196 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
Chris@10
|
197 T9 = VADD(T7, T8);
|
Chris@10
|
198 Tl = VSUB(T7, T8);
|
Chris@10
|
199 }
|
Chris@10
|
200 T5 = VFNMS(LDK(KP500000000), T4, T1);
|
Chris@10
|
201 Ta = VFNMS(LDK(KP500000000), T9, T6);
|
Chris@10
|
202 TG = VADD(T6, T9);
|
Chris@10
|
203 TF = VADD(T1, T4);
|
Chris@10
|
204 Ty = VADD(Tk, Tl);
|
Chris@10
|
205 Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl));
|
Chris@10
|
206 }
|
Chris@10
|
207 {
|
Chris@10
|
208 V Tn, Tq, Te, To, Th, Tr;
|
Chris@10
|
209 Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
210 Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
211 {
|
Chris@10
|
212 V Tc, Td, Tf, Tg;
|
Chris@10
|
213 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
214 Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
215 Te = VSUB(Tc, Td);
|
Chris@10
|
216 To = VADD(Tc, Td);
|
Chris@10
|
217 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
218 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
219 Th = VSUB(Tf, Tg);
|
Chris@10
|
220 Tr = VADD(Tf, Tg);
|
Chris@10
|
221 }
|
Chris@10
|
222 Ti = VMUL(LDK(KP866025403), VSUB(Te, Th));
|
Chris@10
|
223 Tp = VFNMS(LDK(KP500000000), To, Tn);
|
Chris@10
|
224 TJ = VADD(Tq, Tr);
|
Chris@10
|
225 TI = VADD(Tn, To);
|
Chris@10
|
226 Tx = VADD(Te, Th);
|
Chris@10
|
227 Ts = VFNMS(LDK(KP500000000), Tr, Tq);
|
Chris@10
|
228 }
|
Chris@10
|
229 {
|
Chris@10
|
230 V TN, TO, TP, TQ, TR, TS;
|
Chris@10
|
231 {
|
Chris@10
|
232 V TH, TK, TL, TM;
|
Chris@10
|
233 TH = VSUB(TF, TG);
|
Chris@10
|
234 TK = VBYI(VSUB(TI, TJ));
|
Chris@10
|
235 TN = VSUB(TH, TK);
|
Chris@10
|
236 STM2(&(xo[6]), TN, ovs, &(xo[2]));
|
Chris@10
|
237 TO = VADD(TH, TK);
|
Chris@10
|
238 STM2(&(xo[18]), TO, ovs, &(xo[2]));
|
Chris@10
|
239 TL = VADD(TF, TG);
|
Chris@10
|
240 TM = VADD(TI, TJ);
|
Chris@10
|
241 TP = VSUB(TL, TM);
|
Chris@10
|
242 STM2(&(xo[12]), TP, ovs, &(xo[0]));
|
Chris@10
|
243 TQ = VADD(TL, TM);
|
Chris@10
|
244 STM2(&(xo[0]), TQ, ovs, &(xo[0]));
|
Chris@10
|
245 }
|
Chris@10
|
246 {
|
Chris@10
|
247 V Tj, Tv, Tu, Tw, Tb, Tt, TT, TU;
|
Chris@10
|
248 Tb = VSUB(T5, Ta);
|
Chris@10
|
249 Tj = VSUB(Tb, Ti);
|
Chris@10
|
250 Tv = VADD(Tb, Ti);
|
Chris@10
|
251 Tt = VSUB(Tp, Ts);
|
Chris@10
|
252 Tu = VBYI(VADD(Tm, Tt));
|
Chris@10
|
253 Tw = VBYI(VSUB(Tt, Tm));
|
Chris@10
|
254 TR = VSUB(Tj, Tu);
|
Chris@10
|
255 STM2(&(xo[22]), TR, ovs, &(xo[2]));
|
Chris@10
|
256 TS = VADD(Tv, Tw);
|
Chris@10
|
257 STM2(&(xo[10]), TS, ovs, &(xo[2]));
|
Chris@10
|
258 TT = VADD(Tj, Tu);
|
Chris@10
|
259 STM2(&(xo[2]), TT, ovs, &(xo[2]));
|
Chris@10
|
260 STN2(&(xo[0]), TQ, TT, ovs);
|
Chris@10
|
261 TU = VSUB(Tv, Tw);
|
Chris@10
|
262 STM2(&(xo[14]), TU, ovs, &(xo[2]));
|
Chris@10
|
263 STN2(&(xo[12]), TP, TU, ovs);
|
Chris@10
|
264 }
|
Chris@10
|
265 {
|
Chris@10
|
266 V Tz, TD, TC, TE, TA, TB;
|
Chris@10
|
267 Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty)));
|
Chris@10
|
268 TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx)));
|
Chris@10
|
269 TA = VADD(T5, Ta);
|
Chris@10
|
270 TB = VADD(Tp, Ts);
|
Chris@10
|
271 TC = VSUB(TA, TB);
|
Chris@10
|
272 TE = VADD(TA, TB);
|
Chris@10
|
273 {
|
Chris@10
|
274 V TV, TW, TX, TY;
|
Chris@10
|
275 TV = VADD(Tz, TC);
|
Chris@10
|
276 STM2(&(xo[4]), TV, ovs, &(xo[0]));
|
Chris@10
|
277 STN2(&(xo[4]), TV, TN, ovs);
|
Chris@10
|
278 TW = VSUB(TE, TD);
|
Chris@10
|
279 STM2(&(xo[16]), TW, ovs, &(xo[0]));
|
Chris@10
|
280 STN2(&(xo[16]), TW, TO, ovs);
|
Chris@10
|
281 TX = VSUB(TC, Tz);
|
Chris@10
|
282 STM2(&(xo[20]), TX, ovs, &(xo[0]));
|
Chris@10
|
283 STN2(&(xo[20]), TX, TR, ovs);
|
Chris@10
|
284 TY = VADD(TD, TE);
|
Chris@10
|
285 STM2(&(xo[8]), TY, ovs, &(xo[0]));
|
Chris@10
|
286 STN2(&(xo[8]), TY, TS, ovs);
|
Chris@10
|
287 }
|
Chris@10
|
288 }
|
Chris@10
|
289 }
|
Chris@10
|
290 }
|
Chris@10
|
291 }
|
Chris@10
|
292 VLEAVE();
|
Chris@10
|
293 }
|
Chris@10
|
294
|
Chris@10
|
295 static const kdft_desc desc = { 12, XSIMD_STRING("n2bv_12"), {44, 4, 4, 0}, &GENUS, 0, 2, 0, 0 };
|
Chris@10
|
296
|
Chris@10
|
297 void XSIMD(codelet_n2bv_12) (planner *p) {
|
Chris@10
|
298 X(kdft_register) (p, n2bv_12, &desc);
|
Chris@10
|
299 }
|
Chris@10
|
300
|
Chris@10
|
301 #endif /* HAVE_FMA */
|