annotate src/fftw-3.3.3/dft/simd/common/n1fv_9.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:36:52 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name n1fv_9 -include n1f.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 46 FP additions, 38 FP multiplications,
Chris@10 32 * (or, 12 additions, 4 multiplications, 34 fused multiply/add),
Chris@10 33 * 68 stack variables, 19 constants, and 18 memory accesses
Chris@10 34 */
Chris@10 35 #include "n1f.h"
Chris@10 36
Chris@10 37 static void n1fv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
Chris@10 40 DVK(KP826351822, +0.826351822333069651148283373230685203999624323);
Chris@10 41 DVK(KP879385241, +0.879385241571816768108218554649462939872416269);
Chris@10 42 DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
Chris@10 43 DVK(KP666666666, +0.666666666666666666666666666666666666666666667);
Chris@10 44 DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
Chris@10 45 DVK(KP907603734, +0.907603734547952313649323976213898122064543220);
Chris@10 46 DVK(KP420276625, +0.420276625461206169731530603237061658838781920);
Chris@10 47 DVK(KP673648177, +0.673648177666930348851716626769314796000375677);
Chris@10 48 DVK(KP898197570, +0.898197570222573798468955502359086394667167570);
Chris@10 49 DVK(KP347296355, +0.347296355333860697703433253538629592000751354);
Chris@10 50 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 51 DVK(KP439692620, +0.439692620785908384054109277324731469936208134);
Chris@10 52 DVK(KP203604859, +0.203604859554852403062088995281827210665664861);
Chris@10 53 DVK(KP152703644, +0.152703644666139302296566746461370407999248646);
Chris@10 54 DVK(KP586256827, +0.586256827714544512072145703099641959914944179);
Chris@10 55 DVK(KP968908795, +0.968908795874236621082202410917456709164223497);
Chris@10 56 DVK(KP726681596, +0.726681596905677465811651808188092531873167623);
Chris@10 57 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 58 {
Chris@10 59 INT i;
Chris@10 60 const R *xi;
Chris@10 61 R *xo;
Chris@10 62 xi = ri;
Chris@10 63 xo = ro;
Chris@10 64 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) {
Chris@10 65 V T1, T2, T3, T6, Tb, T7, T8, Tc, Td, Tv, T4;
Chris@10 66 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 67 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 68 T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 69 T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 70 Tb = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 71 T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 72 T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 73 Tc = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 74 Td = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 75 Tv = VSUB(T3, T2);
Chris@10 76 T4 = VADD(T2, T3);
Chris@10 77 {
Chris@10 78 V Tl, T9, Tm, Te, Tj, T5;
Chris@10 79 Tl = VSUB(T7, T8);
Chris@10 80 T9 = VADD(T7, T8);
Chris@10 81 Tm = VSUB(Td, Tc);
Chris@10 82 Te = VADD(Tc, Td);
Chris@10 83 Tj = VFNMS(LDK(KP500000000), T4, T1);
Chris@10 84 T5 = VADD(T1, T4);
Chris@10 85 {
Chris@10 86 V Tn, Ta, Tk, Tf;
Chris@10 87 Tn = VFNMS(LDK(KP500000000), T9, T6);
Chris@10 88 Ta = VADD(T6, T9);
Chris@10 89 Tk = VFNMS(LDK(KP500000000), Te, Tb);
Chris@10 90 Tf = VADD(Tb, Te);
Chris@10 91 {
Chris@10 92 V Ty, TC, To, TB, Tx, Ts, Tg, Ti;
Chris@10 93 Ty = VFNMS(LDK(KP726681596), Tl, Tn);
Chris@10 94 TC = VFMA(LDK(KP968908795), Tn, Tl);
Chris@10 95 To = VFNMS(LDK(KP586256827), Tn, Tm);
Chris@10 96 TB = VFNMS(LDK(KP152703644), Tm, Tk);
Chris@10 97 Tx = VFMA(LDK(KP203604859), Tk, Tm);
Chris@10 98 Ts = VFNMS(LDK(KP439692620), Tl, Tk);
Chris@10 99 Tg = VADD(Ta, Tf);
Chris@10 100 Ti = VMUL(LDK(KP866025403), VSUB(Tf, Ta));
Chris@10 101 {
Chris@10 102 V Tz, TI, TF, TD, Tt, Th, Tq, Tp;
Chris@10 103 Tp = VFNMS(LDK(KP347296355), To, Tl);
Chris@10 104 Tz = VFMA(LDK(KP898197570), Ty, Tx);
Chris@10 105 TI = VFNMS(LDK(KP898197570), Ty, Tx);
Chris@10 106 TF = VFNMS(LDK(KP673648177), TC, TB);
Chris@10 107 TD = VFMA(LDK(KP673648177), TC, TB);
Chris@10 108 Tt = VFNMS(LDK(KP420276625), Ts, Tm);
Chris@10 109 ST(&(xo[0]), VADD(T5, Tg), ovs, &(xo[0]));
Chris@10 110 Th = VFNMS(LDK(KP500000000), Tg, T5);
Chris@10 111 Tq = VFNMS(LDK(KP907603734), Tp, Tk);
Chris@10 112 {
Chris@10 113 V TA, TJ, TE, TG, Tu, Tr, TK, TH, Tw;
Chris@10 114 TA = VFMA(LDK(KP852868531), Tz, Tj);
Chris@10 115 TJ = VFMA(LDK(KP666666666), TD, TI);
Chris@10 116 TE = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tv, TD));
Chris@10 117 TG = VFNMS(LDK(KP500000000), Tz, TF);
Chris@10 118 Tu = VFNMS(LDK(KP826351822), Tt, Tn);
Chris@10 119 ST(&(xo[WS(os, 6)]), VFNMSI(Ti, Th), ovs, &(xo[0]));
Chris@10 120 ST(&(xo[WS(os, 3)]), VFMAI(Ti, Th), ovs, &(xo[WS(os, 1)]));
Chris@10 121 Tr = VFNMS(LDK(KP939692620), Tq, Tj);
Chris@10 122 TK = VMUL(LDK(KP866025403), VFMA(LDK(KP852868531), TJ, Tv));
Chris@10 123 ST(&(xo[WS(os, 8)]), VFMAI(TE, TA), ovs, &(xo[0]));
Chris@10 124 ST(&(xo[WS(os, 1)]), VFNMSI(TE, TA), ovs, &(xo[WS(os, 1)]));
Chris@10 125 TH = VFMA(LDK(KP852868531), TG, Tj);
Chris@10 126 Tw = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tv, Tu));
Chris@10 127 ST(&(xo[WS(os, 4)]), VFMAI(TK, TH), ovs, &(xo[0]));
Chris@10 128 ST(&(xo[WS(os, 5)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
Chris@10 129 ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tr), ovs, &(xo[WS(os, 1)]));
Chris@10 130 ST(&(xo[WS(os, 2)]), VFNMSI(Tw, Tr), ovs, &(xo[0]));
Chris@10 131 }
Chris@10 132 }
Chris@10 133 }
Chris@10 134 }
Chris@10 135 }
Chris@10 136 }
Chris@10 137 }
Chris@10 138 VLEAVE();
Chris@10 139 }
Chris@10 140
Chris@10 141 static const kdft_desc desc = { 9, XSIMD_STRING("n1fv_9"), {12, 4, 34, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 142
Chris@10 143 void XSIMD(codelet_n1fv_9) (planner *p) {
Chris@10 144 X(kdft_register) (p, n1fv_9, &desc);
Chris@10 145 }
Chris@10 146
Chris@10 147 #else /* HAVE_FMA */
Chris@10 148
Chris@10 149 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name n1fv_9 -include n1f.h */
Chris@10 150
Chris@10 151 /*
Chris@10 152 * This function contains 46 FP additions, 26 FP multiplications,
Chris@10 153 * (or, 30 additions, 10 multiplications, 16 fused multiply/add),
Chris@10 154 * 41 stack variables, 14 constants, and 18 memory accesses
Chris@10 155 */
Chris@10 156 #include "n1f.h"
Chris@10 157
Chris@10 158 static void n1fv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 159 {
Chris@10 160 DVK(KP342020143, +0.342020143325668733044099614682259580763083368);
Chris@10 161 DVK(KP813797681, +0.813797681349373692844693217248393223289101568);
Chris@10 162 DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
Chris@10 163 DVK(KP296198132, +0.296198132726023843175338011893050938967728390);
Chris@10 164 DVK(KP642787609, +0.642787609686539326322643409907263432907559884);
Chris@10 165 DVK(KP663413948, +0.663413948168938396205421319635891297216863310);
Chris@10 166 DVK(KP556670399, +0.556670399226419366452912952047023132968291906);
Chris@10 167 DVK(KP766044443, +0.766044443118978035202392650555416673935832457);
Chris@10 168 DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
Chris@10 169 DVK(KP150383733, +0.150383733180435296639271897612501926072238258);
Chris@10 170 DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
Chris@10 171 DVK(KP173648177, +0.173648177666930348851716626769314796000375677);
Chris@10 172 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 173 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 174 {
Chris@10 175 INT i;
Chris@10 176 const R *xi;
Chris@10 177 R *xo;
Chris@10 178 xi = ri;
Chris@10 179 xo = ro;
Chris@10 180 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) {
Chris@10 181 V T5, Ts, Tj, To, Tf, Tn, Tp, Tu, Tl, Ta, Tk, Tm, Tt;
Chris@10 182 {
Chris@10 183 V T1, T2, T3, T4;
Chris@10 184 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 185 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 186 T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 187 T4 = VADD(T2, T3);
Chris@10 188 T5 = VADD(T1, T4);
Chris@10 189 Ts = VMUL(LDK(KP866025403), VSUB(T3, T2));
Chris@10 190 Tj = VFNMS(LDK(KP500000000), T4, T1);
Chris@10 191 }
Chris@10 192 {
Chris@10 193 V Tb, Te, Tc, Td;
Chris@10 194 Tb = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 195 Tc = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 196 Td = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 197 Te = VADD(Tc, Td);
Chris@10 198 To = VSUB(Td, Tc);
Chris@10 199 Tf = VADD(Tb, Te);
Chris@10 200 Tn = VFNMS(LDK(KP500000000), Te, Tb);
Chris@10 201 Tp = VFMA(LDK(KP173648177), Tn, VMUL(LDK(KP852868531), To));
Chris@10 202 Tu = VFNMS(LDK(KP984807753), Tn, VMUL(LDK(KP150383733), To));
Chris@10 203 }
Chris@10 204 {
Chris@10 205 V T6, T9, T7, T8;
Chris@10 206 T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 207 T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 208 T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 209 T9 = VADD(T7, T8);
Chris@10 210 Tl = VSUB(T8, T7);
Chris@10 211 Ta = VADD(T6, T9);
Chris@10 212 Tk = VFNMS(LDK(KP500000000), T9, T6);
Chris@10 213 Tm = VFMA(LDK(KP766044443), Tk, VMUL(LDK(KP556670399), Tl));
Chris@10 214 Tt = VFNMS(LDK(KP642787609), Tk, VMUL(LDK(KP663413948), Tl));
Chris@10 215 }
Chris@10 216 {
Chris@10 217 V Ti, Tg, Th, Tz, TA;
Chris@10 218 Ti = VBYI(VMUL(LDK(KP866025403), VSUB(Tf, Ta)));
Chris@10 219 Tg = VADD(Ta, Tf);
Chris@10 220 Th = VFNMS(LDK(KP500000000), Tg, T5);
Chris@10 221 ST(&(xo[0]), VADD(T5, Tg), ovs, &(xo[0]));
Chris@10 222 ST(&(xo[WS(os, 3)]), VADD(Th, Ti), ovs, &(xo[WS(os, 1)]));
Chris@10 223 ST(&(xo[WS(os, 6)]), VSUB(Th, Ti), ovs, &(xo[0]));
Chris@10 224 Tz = VFMA(LDK(KP173648177), Tk, VFNMS(LDK(KP296198132), To, VFNMS(LDK(KP939692620), Tn, VFNMS(LDK(KP852868531), Tl, Tj))));
Chris@10 225 TA = VBYI(VSUB(VFNMS(LDK(KP342020143), Tn, VFNMS(LDK(KP150383733), Tl, VFNMS(LDK(KP984807753), Tk, VMUL(LDK(KP813797681), To)))), Ts));
Chris@10 226 ST(&(xo[WS(os, 7)]), VSUB(Tz, TA), ovs, &(xo[WS(os, 1)]));
Chris@10 227 ST(&(xo[WS(os, 2)]), VADD(Tz, TA), ovs, &(xo[0]));
Chris@10 228 {
Chris@10 229 V Tr, Tx, Tw, Ty, Tq, Tv;
Chris@10 230 Tq = VADD(Tm, Tp);
Chris@10 231 Tr = VADD(Tj, Tq);
Chris@10 232 Tx = VFMA(LDK(KP866025403), VSUB(Tt, Tu), VFNMS(LDK(KP500000000), Tq, Tj));
Chris@10 233 Tv = VADD(Tt, Tu);
Chris@10 234 Tw = VBYI(VADD(Ts, Tv));
Chris@10 235 Ty = VBYI(VADD(Ts, VFNMS(LDK(KP500000000), Tv, VMUL(LDK(KP866025403), VSUB(Tp, Tm)))));
Chris@10 236 ST(&(xo[WS(os, 8)]), VSUB(Tr, Tw), ovs, &(xo[0]));
Chris@10 237 ST(&(xo[WS(os, 4)]), VADD(Tx, Ty), ovs, &(xo[0]));
Chris@10 238 ST(&(xo[WS(os, 1)]), VADD(Tw, Tr), ovs, &(xo[WS(os, 1)]));
Chris@10 239 ST(&(xo[WS(os, 5)]), VSUB(Tx, Ty), ovs, &(xo[WS(os, 1)]));
Chris@10 240 }
Chris@10 241 }
Chris@10 242 }
Chris@10 243 }
Chris@10 244 VLEAVE();
Chris@10 245 }
Chris@10 246
Chris@10 247 static const kdft_desc desc = { 9, XSIMD_STRING("n1fv_9"), {30, 10, 16, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 248
Chris@10 249 void XSIMD(codelet_n1fv_9) (planner *p) {
Chris@10 250 X(kdft_register) (p, n1fv_9, &desc);
Chris@10 251 }
Chris@10 252
Chris@10 253 #endif /* HAVE_FMA */