Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:36:52 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name n1fv_6 -include n1f.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 18 FP additions, 8 FP multiplications,
|
Chris@10
|
32 * (or, 12 additions, 2 multiplications, 6 fused multiply/add),
|
Chris@10
|
33 * 23 stack variables, 2 constants, and 12 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "n1f.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void n1fv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
41 {
|
Chris@10
|
42 INT i;
|
Chris@10
|
43 const R *xi;
|
Chris@10
|
44 R *xo;
|
Chris@10
|
45 xi = ri;
|
Chris@10
|
46 xo = ro;
|
Chris@10
|
47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) {
|
Chris@10
|
48 V T1, T2, T4, T5, T7, T8;
|
Chris@10
|
49 T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
Chris@10
|
50 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
51 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
Chris@10
|
52 T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
53 T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
Chris@10
|
54 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
55 {
|
Chris@10
|
56 V T3, Td, T6, Te, T9, Tf;
|
Chris@10
|
57 T3 = VSUB(T1, T2);
|
Chris@10
|
58 Td = VADD(T1, T2);
|
Chris@10
|
59 T6 = VSUB(T4, T5);
|
Chris@10
|
60 Te = VADD(T4, T5);
|
Chris@10
|
61 T9 = VSUB(T7, T8);
|
Chris@10
|
62 Tf = VADD(T7, T8);
|
Chris@10
|
63 {
|
Chris@10
|
64 V Tg, Ti, Ta, Tc, Th, Tb;
|
Chris@10
|
65 Tg = VADD(Te, Tf);
|
Chris@10
|
66 Ti = VMUL(LDK(KP866025403), VSUB(Tf, Te));
|
Chris@10
|
67 Ta = VADD(T6, T9);
|
Chris@10
|
68 Tc = VMUL(LDK(KP866025403), VSUB(T9, T6));
|
Chris@10
|
69 Th = VFNMS(LDK(KP500000000), Tg, Td);
|
Chris@10
|
70 ST(&(xo[0]), VADD(Td, Tg), ovs, &(xo[0]));
|
Chris@10
|
71 Tb = VFNMS(LDK(KP500000000), Ta, T3);
|
Chris@10
|
72 ST(&(xo[WS(os, 3)]), VADD(T3, Ta), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
73 ST(&(xo[WS(os, 4)]), VFMAI(Ti, Th), ovs, &(xo[0]));
|
Chris@10
|
74 ST(&(xo[WS(os, 2)]), VFNMSI(Ti, Th), ovs, &(xo[0]));
|
Chris@10
|
75 ST(&(xo[WS(os, 1)]), VFMAI(Tc, Tb), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
76 ST(&(xo[WS(os, 5)]), VFNMSI(Tc, Tb), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
77 }
|
Chris@10
|
78 }
|
Chris@10
|
79 }
|
Chris@10
|
80 }
|
Chris@10
|
81 VLEAVE();
|
Chris@10
|
82 }
|
Chris@10
|
83
|
Chris@10
|
84 static const kdft_desc desc = { 6, XSIMD_STRING("n1fv_6"), {12, 2, 6, 0}, &GENUS, 0, 0, 0, 0 };
|
Chris@10
|
85
|
Chris@10
|
86 void XSIMD(codelet_n1fv_6) (planner *p) {
|
Chris@10
|
87 X(kdft_register) (p, n1fv_6, &desc);
|
Chris@10
|
88 }
|
Chris@10
|
89
|
Chris@10
|
90 #else /* HAVE_FMA */
|
Chris@10
|
91
|
Chris@10
|
92 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name n1fv_6 -include n1f.h */
|
Chris@10
|
93
|
Chris@10
|
94 /*
|
Chris@10
|
95 * This function contains 18 FP additions, 4 FP multiplications,
|
Chris@10
|
96 * (or, 16 additions, 2 multiplications, 2 fused multiply/add),
|
Chris@10
|
97 * 19 stack variables, 2 constants, and 12 memory accesses
|
Chris@10
|
98 */
|
Chris@10
|
99 #include "n1f.h"
|
Chris@10
|
100
|
Chris@10
|
101 static void n1fv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
Chris@10
|
102 {
|
Chris@10
|
103 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
104 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
105 {
|
Chris@10
|
106 INT i;
|
Chris@10
|
107 const R *xi;
|
Chris@10
|
108 R *xo;
|
Chris@10
|
109 xi = ri;
|
Chris@10
|
110 xo = ro;
|
Chris@10
|
111 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) {
|
Chris@10
|
112 V T3, Td, T6, Te, T9, Tf, Ta, Tg, T1, T2;
|
Chris@10
|
113 T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
Chris@10
|
114 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
115 T3 = VSUB(T1, T2);
|
Chris@10
|
116 Td = VADD(T1, T2);
|
Chris@10
|
117 {
|
Chris@10
|
118 V T4, T5, T7, T8;
|
Chris@10
|
119 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
Chris@10
|
120 T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
121 T6 = VSUB(T4, T5);
|
Chris@10
|
122 Te = VADD(T4, T5);
|
Chris@10
|
123 T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
Chris@10
|
124 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
125 T9 = VSUB(T7, T8);
|
Chris@10
|
126 Tf = VADD(T7, T8);
|
Chris@10
|
127 }
|
Chris@10
|
128 Ta = VADD(T6, T9);
|
Chris@10
|
129 Tg = VADD(Te, Tf);
|
Chris@10
|
130 ST(&(xo[WS(os, 3)]), VADD(T3, Ta), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
131 ST(&(xo[0]), VADD(Td, Tg), ovs, &(xo[0]));
|
Chris@10
|
132 {
|
Chris@10
|
133 V Tb, Tc, Th, Ti;
|
Chris@10
|
134 Tb = VFNMS(LDK(KP500000000), Ta, T3);
|
Chris@10
|
135 Tc = VBYI(VMUL(LDK(KP866025403), VSUB(T9, T6)));
|
Chris@10
|
136 ST(&(xo[WS(os, 5)]), VSUB(Tb, Tc), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
137 ST(&(xo[WS(os, 1)]), VADD(Tb, Tc), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
138 Th = VFNMS(LDK(KP500000000), Tg, Td);
|
Chris@10
|
139 Ti = VBYI(VMUL(LDK(KP866025403), VSUB(Tf, Te)));
|
Chris@10
|
140 ST(&(xo[WS(os, 2)]), VSUB(Th, Ti), ovs, &(xo[0]));
|
Chris@10
|
141 ST(&(xo[WS(os, 4)]), VADD(Th, Ti), ovs, &(xo[0]));
|
Chris@10
|
142 }
|
Chris@10
|
143 }
|
Chris@10
|
144 }
|
Chris@10
|
145 VLEAVE();
|
Chris@10
|
146 }
|
Chris@10
|
147
|
Chris@10
|
148 static const kdft_desc desc = { 6, XSIMD_STRING("n1fv_6"), {16, 2, 2, 0}, &GENUS, 0, 0, 0, 0 };
|
Chris@10
|
149
|
Chris@10
|
150 void XSIMD(codelet_n1fv_6) (planner *p) {
|
Chris@10
|
151 X(kdft_register) (p, n1fv_6, &desc);
|
Chris@10
|
152 }
|
Chris@10
|
153
|
Chris@10
|
154 #endif /* HAVE_FMA */
|