Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:36:52 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name n1fv_5 -include n1f.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 16 FP additions, 11 FP multiplications,
|
Chris@10
|
32 * (or, 7 additions, 2 multiplications, 9 fused multiply/add),
|
Chris@10
|
33 * 23 stack variables, 4 constants, and 10 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "n1f.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void n1fv_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
43 {
|
Chris@10
|
44 INT i;
|
Chris@10
|
45 const R *xi;
|
Chris@10
|
46 R *xo;
|
Chris@10
|
47 xi = ri;
|
Chris@10
|
48 xo = ro;
|
Chris@10
|
49 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(10, is), MAKE_VOLATILE_STRIDE(10, os)) {
|
Chris@10
|
50 V T1, T2, T3, T5, T6;
|
Chris@10
|
51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
Chris@10
|
52 T2 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
53 T3 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
Chris@10
|
54 T5 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
Chris@10
|
55 T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
56 {
|
Chris@10
|
57 V Tc, T4, Td, T7;
|
Chris@10
|
58 Tc = VSUB(T2, T3);
|
Chris@10
|
59 T4 = VADD(T2, T3);
|
Chris@10
|
60 Td = VSUB(T5, T6);
|
Chris@10
|
61 T7 = VADD(T5, T6);
|
Chris@10
|
62 {
|
Chris@10
|
63 V Tg, Te, Ta, T8, T9, Tf, Tb;
|
Chris@10
|
64 Tg = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tc, Td));
|
Chris@10
|
65 Te = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Td, Tc));
|
Chris@10
|
66 Ta = VSUB(T4, T7);
|
Chris@10
|
67 T8 = VADD(T4, T7);
|
Chris@10
|
68 T9 = VFNMS(LDK(KP250000000), T8, T1);
|
Chris@10
|
69 ST(&(xo[0]), VADD(T1, T8), ovs, &(xo[0]));
|
Chris@10
|
70 Tf = VFNMS(LDK(KP559016994), Ta, T9);
|
Chris@10
|
71 Tb = VFMA(LDK(KP559016994), Ta, T9);
|
Chris@10
|
72 ST(&(xo[WS(os, 2)]), VFMAI(Tg, Tf), ovs, &(xo[0]));
|
Chris@10
|
73 ST(&(xo[WS(os, 3)]), VFNMSI(Tg, Tf), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
74 ST(&(xo[WS(os, 4)]), VFMAI(Te, Tb), ovs, &(xo[0]));
|
Chris@10
|
75 ST(&(xo[WS(os, 1)]), VFNMSI(Te, Tb), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
76 }
|
Chris@10
|
77 }
|
Chris@10
|
78 }
|
Chris@10
|
79 }
|
Chris@10
|
80 VLEAVE();
|
Chris@10
|
81 }
|
Chris@10
|
82
|
Chris@10
|
83 static const kdft_desc desc = { 5, XSIMD_STRING("n1fv_5"), {7, 2, 9, 0}, &GENUS, 0, 0, 0, 0 };
|
Chris@10
|
84
|
Chris@10
|
85 void XSIMD(codelet_n1fv_5) (planner *p) {
|
Chris@10
|
86 X(kdft_register) (p, n1fv_5, &desc);
|
Chris@10
|
87 }
|
Chris@10
|
88
|
Chris@10
|
89 #else /* HAVE_FMA */
|
Chris@10
|
90
|
Chris@10
|
91 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name n1fv_5 -include n1f.h */
|
Chris@10
|
92
|
Chris@10
|
93 /*
|
Chris@10
|
94 * This function contains 16 FP additions, 6 FP multiplications,
|
Chris@10
|
95 * (or, 13 additions, 3 multiplications, 3 fused multiply/add),
|
Chris@10
|
96 * 18 stack variables, 4 constants, and 10 memory accesses
|
Chris@10
|
97 */
|
Chris@10
|
98 #include "n1f.h"
|
Chris@10
|
99
|
Chris@10
|
100 static void n1fv_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
Chris@10
|
101 {
|
Chris@10
|
102 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
103 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
Chris@10
|
104 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
105 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
106 {
|
Chris@10
|
107 INT i;
|
Chris@10
|
108 const R *xi;
|
Chris@10
|
109 R *xo;
|
Chris@10
|
110 xi = ri;
|
Chris@10
|
111 xo = ro;
|
Chris@10
|
112 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(10, is), MAKE_VOLATILE_STRIDE(10, os)) {
|
Chris@10
|
113 V T8, T7, Td, T9, Tc;
|
Chris@10
|
114 T8 = LD(&(xi[0]), ivs, &(xi[0]));
|
Chris@10
|
115 {
|
Chris@10
|
116 V T1, T2, T3, T4, T5, T6;
|
Chris@10
|
117 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
118 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
Chris@10
|
119 T3 = VADD(T1, T2);
|
Chris@10
|
120 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
Chris@10
|
121 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
122 T6 = VADD(T4, T5);
|
Chris@10
|
123 T7 = VMUL(LDK(KP559016994), VSUB(T3, T6));
|
Chris@10
|
124 Td = VSUB(T4, T5);
|
Chris@10
|
125 T9 = VADD(T3, T6);
|
Chris@10
|
126 Tc = VSUB(T1, T2);
|
Chris@10
|
127 }
|
Chris@10
|
128 ST(&(xo[0]), VADD(T8, T9), ovs, &(xo[0]));
|
Chris@10
|
129 {
|
Chris@10
|
130 V Te, Tf, Tb, Tg, Ta;
|
Chris@10
|
131 Te = VBYI(VFMA(LDK(KP951056516), Tc, VMUL(LDK(KP587785252), Td)));
|
Chris@10
|
132 Tf = VBYI(VFNMS(LDK(KP587785252), Tc, VMUL(LDK(KP951056516), Td)));
|
Chris@10
|
133 Ta = VFNMS(LDK(KP250000000), T9, T8);
|
Chris@10
|
134 Tb = VADD(T7, Ta);
|
Chris@10
|
135 Tg = VSUB(Ta, T7);
|
Chris@10
|
136 ST(&(xo[WS(os, 1)]), VSUB(Tb, Te), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
137 ST(&(xo[WS(os, 3)]), VSUB(Tg, Tf), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
138 ST(&(xo[WS(os, 4)]), VADD(Te, Tb), ovs, &(xo[0]));
|
Chris@10
|
139 ST(&(xo[WS(os, 2)]), VADD(Tf, Tg), ovs, &(xo[0]));
|
Chris@10
|
140 }
|
Chris@10
|
141 }
|
Chris@10
|
142 }
|
Chris@10
|
143 VLEAVE();
|
Chris@10
|
144 }
|
Chris@10
|
145
|
Chris@10
|
146 static const kdft_desc desc = { 5, XSIMD_STRING("n1fv_5"), {13, 3, 3, 0}, &GENUS, 0, 0, 0, 0 };
|
Chris@10
|
147
|
Chris@10
|
148 void XSIMD(codelet_n1fv_5) (planner *p) {
|
Chris@10
|
149 X(kdft_register) (p, n1fv_5, &desc);
|
Chris@10
|
150 }
|
Chris@10
|
151
|
Chris@10
|
152 #endif /* HAVE_FMA */
|