annotate src/fftw-3.3.3/dft/simd/common/n1fv_5.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:36:52 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name n1fv_5 -include n1f.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 16 FP additions, 11 FP multiplications,
Chris@10 32 * (or, 7 additions, 2 multiplications, 9 fused multiply/add),
Chris@10 33 * 23 stack variables, 4 constants, and 10 memory accesses
Chris@10 34 */
Chris@10 35 #include "n1f.h"
Chris@10 36
Chris@10 37 static void n1fv_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 43 {
Chris@10 44 INT i;
Chris@10 45 const R *xi;
Chris@10 46 R *xo;
Chris@10 47 xi = ri;
Chris@10 48 xo = ro;
Chris@10 49 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(10, is), MAKE_VOLATILE_STRIDE(10, os)) {
Chris@10 50 V T1, T2, T3, T5, T6;
Chris@10 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 52 T2 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 53 T3 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 54 T5 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 55 T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 56 {
Chris@10 57 V Tc, T4, Td, T7;
Chris@10 58 Tc = VSUB(T2, T3);
Chris@10 59 T4 = VADD(T2, T3);
Chris@10 60 Td = VSUB(T5, T6);
Chris@10 61 T7 = VADD(T5, T6);
Chris@10 62 {
Chris@10 63 V Tg, Te, Ta, T8, T9, Tf, Tb;
Chris@10 64 Tg = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tc, Td));
Chris@10 65 Te = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Td, Tc));
Chris@10 66 Ta = VSUB(T4, T7);
Chris@10 67 T8 = VADD(T4, T7);
Chris@10 68 T9 = VFNMS(LDK(KP250000000), T8, T1);
Chris@10 69 ST(&(xo[0]), VADD(T1, T8), ovs, &(xo[0]));
Chris@10 70 Tf = VFNMS(LDK(KP559016994), Ta, T9);
Chris@10 71 Tb = VFMA(LDK(KP559016994), Ta, T9);
Chris@10 72 ST(&(xo[WS(os, 2)]), VFMAI(Tg, Tf), ovs, &(xo[0]));
Chris@10 73 ST(&(xo[WS(os, 3)]), VFNMSI(Tg, Tf), ovs, &(xo[WS(os, 1)]));
Chris@10 74 ST(&(xo[WS(os, 4)]), VFMAI(Te, Tb), ovs, &(xo[0]));
Chris@10 75 ST(&(xo[WS(os, 1)]), VFNMSI(Te, Tb), ovs, &(xo[WS(os, 1)]));
Chris@10 76 }
Chris@10 77 }
Chris@10 78 }
Chris@10 79 }
Chris@10 80 VLEAVE();
Chris@10 81 }
Chris@10 82
Chris@10 83 static const kdft_desc desc = { 5, XSIMD_STRING("n1fv_5"), {7, 2, 9, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 84
Chris@10 85 void XSIMD(codelet_n1fv_5) (planner *p) {
Chris@10 86 X(kdft_register) (p, n1fv_5, &desc);
Chris@10 87 }
Chris@10 88
Chris@10 89 #else /* HAVE_FMA */
Chris@10 90
Chris@10 91 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name n1fv_5 -include n1f.h */
Chris@10 92
Chris@10 93 /*
Chris@10 94 * This function contains 16 FP additions, 6 FP multiplications,
Chris@10 95 * (or, 13 additions, 3 multiplications, 3 fused multiply/add),
Chris@10 96 * 18 stack variables, 4 constants, and 10 memory accesses
Chris@10 97 */
Chris@10 98 #include "n1f.h"
Chris@10 99
Chris@10 100 static void n1fv_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 101 {
Chris@10 102 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 103 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 104 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 105 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 106 {
Chris@10 107 INT i;
Chris@10 108 const R *xi;
Chris@10 109 R *xo;
Chris@10 110 xi = ri;
Chris@10 111 xo = ro;
Chris@10 112 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(10, is), MAKE_VOLATILE_STRIDE(10, os)) {
Chris@10 113 V T8, T7, Td, T9, Tc;
Chris@10 114 T8 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 115 {
Chris@10 116 V T1, T2, T3, T4, T5, T6;
Chris@10 117 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 118 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 119 T3 = VADD(T1, T2);
Chris@10 120 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 121 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 122 T6 = VADD(T4, T5);
Chris@10 123 T7 = VMUL(LDK(KP559016994), VSUB(T3, T6));
Chris@10 124 Td = VSUB(T4, T5);
Chris@10 125 T9 = VADD(T3, T6);
Chris@10 126 Tc = VSUB(T1, T2);
Chris@10 127 }
Chris@10 128 ST(&(xo[0]), VADD(T8, T9), ovs, &(xo[0]));
Chris@10 129 {
Chris@10 130 V Te, Tf, Tb, Tg, Ta;
Chris@10 131 Te = VBYI(VFMA(LDK(KP951056516), Tc, VMUL(LDK(KP587785252), Td)));
Chris@10 132 Tf = VBYI(VFNMS(LDK(KP587785252), Tc, VMUL(LDK(KP951056516), Td)));
Chris@10 133 Ta = VFNMS(LDK(KP250000000), T9, T8);
Chris@10 134 Tb = VADD(T7, Ta);
Chris@10 135 Tg = VSUB(Ta, T7);
Chris@10 136 ST(&(xo[WS(os, 1)]), VSUB(Tb, Te), ovs, &(xo[WS(os, 1)]));
Chris@10 137 ST(&(xo[WS(os, 3)]), VSUB(Tg, Tf), ovs, &(xo[WS(os, 1)]));
Chris@10 138 ST(&(xo[WS(os, 4)]), VADD(Te, Tb), ovs, &(xo[0]));
Chris@10 139 ST(&(xo[WS(os, 2)]), VADD(Tf, Tg), ovs, &(xo[0]));
Chris@10 140 }
Chris@10 141 }
Chris@10 142 }
Chris@10 143 VLEAVE();
Chris@10 144 }
Chris@10 145
Chris@10 146 static const kdft_desc desc = { 5, XSIMD_STRING("n1fv_5"), {13, 3, 3, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 147
Chris@10 148 void XSIMD(codelet_n1fv_5) (planner *p) {
Chris@10 149 X(kdft_register) (p, n1fv_5, &desc);
Chris@10 150 }
Chris@10 151
Chris@10 152 #endif /* HAVE_FMA */