annotate src/fftw-3.3.3/dft/simd/common/n1fv_15.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:36:52 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name n1fv_15 -include n1f.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 78 FP additions, 49 FP multiplications,
Chris@10 32 * (or, 36 additions, 7 multiplications, 42 fused multiply/add),
Chris@10 33 * 78 stack variables, 8 constants, and 30 memory accesses
Chris@10 34 */
Chris@10 35 #include "n1f.h"
Chris@10 36
Chris@10 37 static void n1fv_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
Chris@10 40 DVK(KP910592997, +0.910592997310029334643087372129977886038870291);
Chris@10 41 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 43 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 44 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 45 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 46 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 47 {
Chris@10 48 INT i;
Chris@10 49 const R *xi;
Chris@10 50 R *xo;
Chris@10 51 xi = ri;
Chris@10 52 xo = ro;
Chris@10 53 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(30, is), MAKE_VOLATILE_STRIDE(30, os)) {
Chris@10 54 V Tb, TX, TM, TQ, Th, TB, T5, Ti, Ta, TC, TN, Te, TG, Tq, Tj;
Chris@10 55 V T1, T2, T3;
Chris@10 56 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 57 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 58 T3 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@10 59 {
Chris@10 60 V T6, T7, T8, Tm, Tn, To;
Chris@10 61 T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 62 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 63 T8 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
Chris@10 64 Tm = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@10 65 Tn = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
Chris@10 66 To = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 67 {
Chris@10 68 V T4, Tc, T9, Td, Tp;
Chris@10 69 Tb = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
Chris@10 70 T4 = VADD(T2, T3);
Chris@10 71 TX = VSUB(T3, T2);
Chris@10 72 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 73 TM = VSUB(T8, T7);
Chris@10 74 T9 = VADD(T7, T8);
Chris@10 75 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 76 Tp = VADD(Tn, To);
Chris@10 77 TQ = VSUB(To, Tn);
Chris@10 78 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 79 TB = VFNMS(LDK(KP500000000), T4, T1);
Chris@10 80 T5 = VADD(T1, T4);
Chris@10 81 Ti = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@10 82 Ta = VADD(T6, T9);
Chris@10 83 TC = VFNMS(LDK(KP500000000), T9, T6);
Chris@10 84 TN = VSUB(Td, Tc);
Chris@10 85 Te = VADD(Tc, Td);
Chris@10 86 TG = VFNMS(LDK(KP500000000), Tp, Tm);
Chris@10 87 Tq = VADD(Tm, Tp);
Chris@10 88 Tj = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 89 }
Chris@10 90 }
Chris@10 91 {
Chris@10 92 V TY, TO, Tf, TD, TP, Tk;
Chris@10 93 TY = VADD(TM, TN);
Chris@10 94 TO = VSUB(TM, TN);
Chris@10 95 Tf = VADD(Tb, Te);
Chris@10 96 TD = VFNMS(LDK(KP500000000), Te, Tb);
Chris@10 97 TP = VSUB(Tj, Ti);
Chris@10 98 Tk = VADD(Ti, Tj);
Chris@10 99 {
Chris@10 100 V Tx, Tg, TE, TU, TZ, TR, Tl, TF;
Chris@10 101 Tx = VSUB(Ta, Tf);
Chris@10 102 Tg = VADD(Ta, Tf);
Chris@10 103 TE = VADD(TC, TD);
Chris@10 104 TU = VSUB(TC, TD);
Chris@10 105 TZ = VADD(TP, TQ);
Chris@10 106 TR = VSUB(TP, TQ);
Chris@10 107 Tl = VADD(Th, Tk);
Chris@10 108 TF = VFNMS(LDK(KP500000000), Tk, Th);
Chris@10 109 {
Chris@10 110 V T12, T10, T18, TS, Tw, Tr, TH, TV, T11, T1g;
Chris@10 111 T12 = VSUB(TY, TZ);
Chris@10 112 T10 = VADD(TY, TZ);
Chris@10 113 T18 = VFNMS(LDK(KP618033988), TO, TR);
Chris@10 114 TS = VFMA(LDK(KP618033988), TR, TO);
Chris@10 115 Tw = VSUB(Tl, Tq);
Chris@10 116 Tr = VADD(Tl, Tq);
Chris@10 117 TH = VADD(TF, TG);
Chris@10 118 TV = VSUB(TF, TG);
Chris@10 119 T11 = VFNMS(LDK(KP250000000), T10, TX);
Chris@10 120 T1g = VMUL(LDK(KP866025403), VADD(TX, T10));
Chris@10 121 {
Chris@10 122 V TA, Ty, Tu, TK, TI, T1a, TW, T1b, T13, Tt, Ts, TJ, T1f;
Chris@10 123 TA = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tx));
Chris@10 124 Ty = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tx, Tw));
Chris@10 125 Ts = VADD(Tg, Tr);
Chris@10 126 Tu = VSUB(Tg, Tr);
Chris@10 127 TK = VSUB(TE, TH);
Chris@10 128 TI = VADD(TE, TH);
Chris@10 129 T1a = VFNMS(LDK(KP618033988), TU, TV);
Chris@10 130 TW = VFMA(LDK(KP618033988), TV, TU);
Chris@10 131 T1b = VFNMS(LDK(KP559016994), T12, T11);
Chris@10 132 T13 = VFMA(LDK(KP559016994), T12, T11);
Chris@10 133 ST(&(xo[0]), VADD(T5, Ts), ovs, &(xo[0]));
Chris@10 134 Tt = VFNMS(LDK(KP250000000), Ts, T5);
Chris@10 135 TJ = VFNMS(LDK(KP250000000), TI, TB);
Chris@10 136 T1f = VADD(TB, TI);
Chris@10 137 {
Chris@10 138 V T1c, T1e, T16, T14, Tv, Tz, T17, TL;
Chris@10 139 T1c = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T1b, T1a));
Chris@10 140 T1e = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T1b, T1a));
Chris@10 141 T16 = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T13, TW));
Chris@10 142 T14 = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T13, TW));
Chris@10 143 Tv = VFNMS(LDK(KP559016994), Tu, Tt);
Chris@10 144 Tz = VFMA(LDK(KP559016994), Tu, Tt);
Chris@10 145 T17 = VFNMS(LDK(KP559016994), TK, TJ);
Chris@10 146 TL = VFMA(LDK(KP559016994), TK, TJ);
Chris@10 147 ST(&(xo[WS(os, 10)]), VFMAI(T1g, T1f), ovs, &(xo[0]));
Chris@10 148 ST(&(xo[WS(os, 5)]), VFNMSI(T1g, T1f), ovs, &(xo[WS(os, 1)]));
Chris@10 149 {
Chris@10 150 V T19, T1d, T15, TT;
Chris@10 151 ST(&(xo[WS(os, 12)]), VFMAI(Ty, Tv), ovs, &(xo[0]));
Chris@10 152 ST(&(xo[WS(os, 3)]), VFNMSI(Ty, Tv), ovs, &(xo[WS(os, 1)]));
Chris@10 153 ST(&(xo[WS(os, 9)]), VFMAI(TA, Tz), ovs, &(xo[WS(os, 1)]));
Chris@10 154 ST(&(xo[WS(os, 6)]), VFNMSI(TA, Tz), ovs, &(xo[0]));
Chris@10 155 T19 = VFMA(LDK(KP823639103), T18, T17);
Chris@10 156 T1d = VFNMS(LDK(KP823639103), T18, T17);
Chris@10 157 T15 = VFNMS(LDK(KP823639103), TS, TL);
Chris@10 158 TT = VFMA(LDK(KP823639103), TS, TL);
Chris@10 159 ST(&(xo[WS(os, 2)]), VFMAI(T1c, T19), ovs, &(xo[0]));
Chris@10 160 ST(&(xo[WS(os, 13)]), VFNMSI(T1c, T19), ovs, &(xo[WS(os, 1)]));
Chris@10 161 ST(&(xo[WS(os, 7)]), VFMAI(T1e, T1d), ovs, &(xo[WS(os, 1)]));
Chris@10 162 ST(&(xo[WS(os, 8)]), VFNMSI(T1e, T1d), ovs, &(xo[0]));
Chris@10 163 ST(&(xo[WS(os, 4)]), VFMAI(T16, T15), ovs, &(xo[0]));
Chris@10 164 ST(&(xo[WS(os, 11)]), VFNMSI(T16, T15), ovs, &(xo[WS(os, 1)]));
Chris@10 165 ST(&(xo[WS(os, 14)]), VFMAI(T14, TT), ovs, &(xo[0]));
Chris@10 166 ST(&(xo[WS(os, 1)]), VFNMSI(T14, TT), ovs, &(xo[WS(os, 1)]));
Chris@10 167 }
Chris@10 168 }
Chris@10 169 }
Chris@10 170 }
Chris@10 171 }
Chris@10 172 }
Chris@10 173 }
Chris@10 174 }
Chris@10 175 VLEAVE();
Chris@10 176 }
Chris@10 177
Chris@10 178 static const kdft_desc desc = { 15, XSIMD_STRING("n1fv_15"), {36, 7, 42, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 179
Chris@10 180 void XSIMD(codelet_n1fv_15) (planner *p) {
Chris@10 181 X(kdft_register) (p, n1fv_15, &desc);
Chris@10 182 }
Chris@10 183
Chris@10 184 #else /* HAVE_FMA */
Chris@10 185
Chris@10 186 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name n1fv_15 -include n1f.h */
Chris@10 187
Chris@10 188 /*
Chris@10 189 * This function contains 78 FP additions, 25 FP multiplications,
Chris@10 190 * (or, 64 additions, 11 multiplications, 14 fused multiply/add),
Chris@10 191 * 55 stack variables, 10 constants, and 30 memory accesses
Chris@10 192 */
Chris@10 193 #include "n1f.h"
Chris@10 194
Chris@10 195 static void n1fv_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 196 {
Chris@10 197 DVK(KP216506350, +0.216506350946109661690930792688234045867850657);
Chris@10 198 DVK(KP509036960, +0.509036960455127183450980863393907648510733164);
Chris@10 199 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
Chris@10 200 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 201 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 202 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 203 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 204 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 205 DVK(KP484122918, +0.484122918275927110647408174972799951354115213);
Chris@10 206 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 207 {
Chris@10 208 INT i;
Chris@10 209 const R *xi;
Chris@10 210 R *xo;
Chris@10 211 xi = ri;
Chris@10 212 xo = ro;
Chris@10 213 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(30, is), MAKE_VOLATILE_STRIDE(30, os)) {
Chris@10 214 V T5, T10, TB, TO, TU, TV, TR, Ta, Tf, Tg, Tl, Tq, Tr, TE, TH;
Chris@10 215 V TI, TZ, T11, T1f, T1g;
Chris@10 216 {
Chris@10 217 V T1, T2, T3, T4;
Chris@10 218 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 219 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 220 T3 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@10 221 T4 = VADD(T2, T3);
Chris@10 222 T5 = VADD(T1, T4);
Chris@10 223 T10 = VSUB(T3, T2);
Chris@10 224 TB = VFNMS(LDK(KP500000000), T4, T1);
Chris@10 225 }
Chris@10 226 {
Chris@10 227 V T6, T9, TC, TP, Tm, Tp, TG, TN, Tb, Te, TD, TQ, Th, Tk, TF;
Chris@10 228 V TM, TX, TY;
Chris@10 229 {
Chris@10 230 V T7, T8, Tn, To;
Chris@10 231 T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 232 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 233 T8 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
Chris@10 234 T9 = VADD(T7, T8);
Chris@10 235 TC = VFNMS(LDK(KP500000000), T9, T6);
Chris@10 236 TP = VSUB(T8, T7);
Chris@10 237 Tm = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@10 238 Tn = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
Chris@10 239 To = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 240 Tp = VADD(Tn, To);
Chris@10 241 TG = VFNMS(LDK(KP500000000), Tp, Tm);
Chris@10 242 TN = VSUB(To, Tn);
Chris@10 243 }
Chris@10 244 {
Chris@10 245 V Tc, Td, Ti, Tj;
Chris@10 246 Tb = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
Chris@10 247 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 248 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 249 Te = VADD(Tc, Td);
Chris@10 250 TD = VFNMS(LDK(KP500000000), Te, Tb);
Chris@10 251 TQ = VSUB(Td, Tc);
Chris@10 252 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 253 Ti = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@10 254 Tj = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 255 Tk = VADD(Ti, Tj);
Chris@10 256 TF = VFNMS(LDK(KP500000000), Tk, Th);
Chris@10 257 TM = VSUB(Tj, Ti);
Chris@10 258 }
Chris@10 259 TO = VSUB(TM, TN);
Chris@10 260 TU = VSUB(TF, TG);
Chris@10 261 TV = VSUB(TC, TD);
Chris@10 262 TR = VSUB(TP, TQ);
Chris@10 263 Ta = VADD(T6, T9);
Chris@10 264 Tf = VADD(Tb, Te);
Chris@10 265 Tg = VADD(Ta, Tf);
Chris@10 266 Tl = VADD(Th, Tk);
Chris@10 267 Tq = VADD(Tm, Tp);
Chris@10 268 Tr = VADD(Tl, Tq);
Chris@10 269 TE = VADD(TC, TD);
Chris@10 270 TH = VADD(TF, TG);
Chris@10 271 TI = VADD(TE, TH);
Chris@10 272 TX = VADD(TP, TQ);
Chris@10 273 TY = VADD(TM, TN);
Chris@10 274 TZ = VMUL(LDK(KP484122918), VSUB(TX, TY));
Chris@10 275 T11 = VADD(TX, TY);
Chris@10 276 }
Chris@10 277 T1f = VADD(TB, TI);
Chris@10 278 T1g = VBYI(VMUL(LDK(KP866025403), VADD(T10, T11)));
Chris@10 279 ST(&(xo[WS(os, 5)]), VSUB(T1f, T1g), ovs, &(xo[WS(os, 1)]));
Chris@10 280 ST(&(xo[WS(os, 10)]), VADD(T1f, T1g), ovs, &(xo[0]));
Chris@10 281 {
Chris@10 282 V Tu, Ts, Tt, Ty, TA, Tw, Tx, Tz, Tv;
Chris@10 283 Tu = VMUL(LDK(KP559016994), VSUB(Tg, Tr));
Chris@10 284 Ts = VADD(Tg, Tr);
Chris@10 285 Tt = VFNMS(LDK(KP250000000), Ts, T5);
Chris@10 286 Tw = VSUB(Tl, Tq);
Chris@10 287 Tx = VSUB(Ta, Tf);
Chris@10 288 Ty = VBYI(VFNMS(LDK(KP587785252), Tx, VMUL(LDK(KP951056516), Tw)));
Chris@10 289 TA = VBYI(VFMA(LDK(KP951056516), Tx, VMUL(LDK(KP587785252), Tw)));
Chris@10 290 ST(&(xo[0]), VADD(T5, Ts), ovs, &(xo[0]));
Chris@10 291 Tz = VADD(Tu, Tt);
Chris@10 292 ST(&(xo[WS(os, 6)]), VSUB(Tz, TA), ovs, &(xo[0]));
Chris@10 293 ST(&(xo[WS(os, 9)]), VADD(TA, Tz), ovs, &(xo[WS(os, 1)]));
Chris@10 294 Tv = VSUB(Tt, Tu);
Chris@10 295 ST(&(xo[WS(os, 3)]), VSUB(Tv, Ty), ovs, &(xo[WS(os, 1)]));
Chris@10 296 ST(&(xo[WS(os, 12)]), VADD(Ty, Tv), ovs, &(xo[0]));
Chris@10 297 }
Chris@10 298 {
Chris@10 299 V TS, TW, T1b, T18, T13, T1a, TL, T17, T12, TJ, TK;
Chris@10 300 TS = VFNMS(LDK(KP509036960), TR, VMUL(LDK(KP823639103), TO));
Chris@10 301 TW = VFNMS(LDK(KP587785252), TV, VMUL(LDK(KP951056516), TU));
Chris@10 302 T1b = VFMA(LDK(KP951056516), TV, VMUL(LDK(KP587785252), TU));
Chris@10 303 T18 = VFMA(LDK(KP823639103), TR, VMUL(LDK(KP509036960), TO));
Chris@10 304 T12 = VFNMS(LDK(KP216506350), T11, VMUL(LDK(KP866025403), T10));
Chris@10 305 T13 = VSUB(TZ, T12);
Chris@10 306 T1a = VADD(TZ, T12);
Chris@10 307 TJ = VFNMS(LDK(KP250000000), TI, TB);
Chris@10 308 TK = VMUL(LDK(KP559016994), VSUB(TE, TH));
Chris@10 309 TL = VSUB(TJ, TK);
Chris@10 310 T17 = VADD(TK, TJ);
Chris@10 311 {
Chris@10 312 V TT, T14, T1d, T1e;
Chris@10 313 TT = VSUB(TL, TS);
Chris@10 314 T14 = VBYI(VSUB(TW, T13));
Chris@10 315 ST(&(xo[WS(os, 8)]), VSUB(TT, T14), ovs, &(xo[0]));
Chris@10 316 ST(&(xo[WS(os, 7)]), VADD(TT, T14), ovs, &(xo[WS(os, 1)]));
Chris@10 317 T1d = VSUB(T17, T18);
Chris@10 318 T1e = VBYI(VADD(T1b, T1a));
Chris@10 319 ST(&(xo[WS(os, 11)]), VSUB(T1d, T1e), ovs, &(xo[WS(os, 1)]));
Chris@10 320 ST(&(xo[WS(os, 4)]), VADD(T1d, T1e), ovs, &(xo[0]));
Chris@10 321 }
Chris@10 322 {
Chris@10 323 V T15, T16, T19, T1c;
Chris@10 324 T15 = VADD(TL, TS);
Chris@10 325 T16 = VBYI(VADD(TW, T13));
Chris@10 326 ST(&(xo[WS(os, 13)]), VSUB(T15, T16), ovs, &(xo[WS(os, 1)]));
Chris@10 327 ST(&(xo[WS(os, 2)]), VADD(T15, T16), ovs, &(xo[0]));
Chris@10 328 T19 = VADD(T17, T18);
Chris@10 329 T1c = VBYI(VSUB(T1a, T1b));
Chris@10 330 ST(&(xo[WS(os, 14)]), VSUB(T19, T1c), ovs, &(xo[0]));
Chris@10 331 ST(&(xo[WS(os, 1)]), VADD(T19, T1c), ovs, &(xo[WS(os, 1)]));
Chris@10 332 }
Chris@10 333 }
Chris@10 334 }
Chris@10 335 }
Chris@10 336 VLEAVE();
Chris@10 337 }
Chris@10 338
Chris@10 339 static const kdft_desc desc = { 15, XSIMD_STRING("n1fv_15"), {64, 11, 14, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 340
Chris@10 341 void XSIMD(codelet_n1fv_15) (planner *p) {
Chris@10 342 X(kdft_register) (p, n1fv_15, &desc);
Chris@10 343 }
Chris@10 344
Chris@10 345 #endif /* HAVE_FMA */