annotate src/fftw-3.3.3/dft/simd/common/n1fv_12.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:36:52 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 48 FP additions, 20 FP multiplications,
Chris@10 32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
Chris@10 33 * 49 stack variables, 2 constants, and 24 memory accesses
Chris@10 34 */
Chris@10 35 #include "n1f.h"
Chris@10 36
Chris@10 37 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 41 {
Chris@10 42 INT i;
Chris@10 43 const R *xi;
Chris@10 44 R *xo;
Chris@10 45 xi = ri;
Chris@10 46 xo = ro;
Chris@10 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
Chris@10 48 V T1, T6, Tk, Tn, Tc, Td, Tf, Tr, T4, Ts, T9, Tg, Te, Tl;
Chris@10 49 {
Chris@10 50 V T2, T3, T7, T8;
Chris@10 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@10 56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 57 Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 58 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@10 59 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@10 60 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 61 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 62 Tr = VSUB(T3, T2);
Chris@10 63 T4 = VADD(T2, T3);
Chris@10 64 Ts = VSUB(T8, T7);
Chris@10 65 T9 = VADD(T7, T8);
Chris@10 66 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 67 }
Chris@10 68 Te = VSUB(Tc, Td);
Chris@10 69 Tl = VADD(Td, Tc);
Chris@10 70 {
Chris@10 71 V T5, TF, TB, Tt, Ta, TG, Th, To, Tm, TI;
Chris@10 72 T5 = VFNMS(LDK(KP500000000), T4, T1);
Chris@10 73 TF = VADD(T1, T4);
Chris@10 74 TB = VADD(Tr, Ts);
Chris@10 75 Tt = VSUB(Tr, Ts);
Chris@10 76 Ta = VFNMS(LDK(KP500000000), T9, T6);
Chris@10 77 TG = VADD(T6, T9);
Chris@10 78 Th = VSUB(Tf, Tg);
Chris@10 79 To = VADD(Tf, Tg);
Chris@10 80 Tm = VFNMS(LDK(KP500000000), Tl, Tk);
Chris@10 81 TI = VADD(Tk, Tl);
Chris@10 82 {
Chris@10 83 V TH, TL, Tb, Tx, TJ, Tp, Ti, TA;
Chris@10 84 TH = VSUB(TF, TG);
Chris@10 85 TL = VADD(TF, TG);
Chris@10 86 Tb = VSUB(T5, Ta);
Chris@10 87 Tx = VADD(T5, Ta);
Chris@10 88 TJ = VADD(Tn, To);
Chris@10 89 Tp = VFNMS(LDK(KP500000000), To, Tn);
Chris@10 90 Ti = VADD(Te, Th);
Chris@10 91 TA = VSUB(Te, Th);
Chris@10 92 {
Chris@10 93 V Tq, Ty, TK, TM;
Chris@10 94 Tq = VSUB(Tm, Tp);
Chris@10 95 Ty = VADD(Tm, Tp);
Chris@10 96 TK = VSUB(TI, TJ);
Chris@10 97 TM = VADD(TI, TJ);
Chris@10 98 {
Chris@10 99 V TC, TE, Tj, Tv;
Chris@10 100 TC = VMUL(LDK(KP866025403), VSUB(TA, TB));
Chris@10 101 TE = VMUL(LDK(KP866025403), VADD(TB, TA));
Chris@10 102 Tj = VFMA(LDK(KP866025403), Ti, Tb);
Chris@10 103 Tv = VFNMS(LDK(KP866025403), Ti, Tb);
Chris@10 104 {
Chris@10 105 V Tz, TD, Tu, Tw;
Chris@10 106 Tz = VSUB(Tx, Ty);
Chris@10 107 TD = VADD(Tx, Ty);
Chris@10 108 Tu = VFNMS(LDK(KP866025403), Tt, Tq);
Chris@10 109 Tw = VFMA(LDK(KP866025403), Tt, Tq);
Chris@10 110 ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
Chris@10 111 ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
Chris@10 112 ST(&(xo[WS(os, 3)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
Chris@10 113 ST(&(xo[WS(os, 9)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
Chris@10 114 ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
Chris@10 115 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
Chris@10 116 ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tz), ovs, &(xo[0]));
Chris@10 117 ST(&(xo[WS(os, 2)]), VFMAI(TC, Tz), ovs, &(xo[0]));
Chris@10 118 ST(&(xo[WS(os, 5)]), VFNMSI(Tw, Tv), ovs, &(xo[WS(os, 1)]));
Chris@10 119 ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tv), ovs, &(xo[WS(os, 1)]));
Chris@10 120 ST(&(xo[WS(os, 11)]), VFMAI(Tu, Tj), ovs, &(xo[WS(os, 1)]));
Chris@10 121 ST(&(xo[WS(os, 1)]), VFNMSI(Tu, Tj), ovs, &(xo[WS(os, 1)]));
Chris@10 122 }
Chris@10 123 }
Chris@10 124 }
Chris@10 125 }
Chris@10 126 }
Chris@10 127 }
Chris@10 128 }
Chris@10 129 VLEAVE();
Chris@10 130 }
Chris@10 131
Chris@10 132 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 133
Chris@10 134 void XSIMD(codelet_n1fv_12) (planner *p) {
Chris@10 135 X(kdft_register) (p, n1fv_12, &desc);
Chris@10 136 }
Chris@10 137
Chris@10 138 #else /* HAVE_FMA */
Chris@10 139
Chris@10 140 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */
Chris@10 141
Chris@10 142 /*
Chris@10 143 * This function contains 48 FP additions, 8 FP multiplications,
Chris@10 144 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
Chris@10 145 * 27 stack variables, 2 constants, and 24 memory accesses
Chris@10 146 */
Chris@10 147 #include "n1f.h"
Chris@10 148
Chris@10 149 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 150 {
Chris@10 151 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 152 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 153 {
Chris@10 154 INT i;
Chris@10 155 const R *xi;
Chris@10 156 R *xo;
Chris@10 157 xi = ri;
Chris@10 158 xo = ro;
Chris@10 159 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
Chris@10 160 V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu;
Chris@10 161 {
Chris@10 162 V T1, T6, T4, Tw, T9, Tx;
Chris@10 163 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 164 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 165 {
Chris@10 166 V T2, T3, T7, T8;
Chris@10 167 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 168 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 169 T4 = VADD(T2, T3);
Chris@10 170 Tw = VSUB(T3, T2);
Chris@10 171 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@10 172 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 173 T9 = VADD(T7, T8);
Chris@10 174 Tx = VSUB(T8, T7);
Chris@10 175 }
Chris@10 176 T5 = VADD(T1, T4);
Chris@10 177 Ta = VADD(T6, T9);
Chris@10 178 TJ = VADD(Tw, Tx);
Chris@10 179 Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx));
Chris@10 180 Tq = VFNMS(LDK(KP500000000), T9, T6);
Chris@10 181 Tp = VFNMS(LDK(KP500000000), T4, T1);
Chris@10 182 }
Chris@10 183 {
Chris@10 184 V Tc, Th, Tf, Ts, Tk, Tt;
Chris@10 185 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 186 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@10 187 {
Chris@10 188 V Td, Te, Ti, Tj;
Chris@10 189 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 190 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@10 191 Tf = VADD(Td, Te);
Chris@10 192 Ts = VSUB(Te, Td);
Chris@10 193 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 194 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 195 Tk = VADD(Ti, Tj);
Chris@10 196 Tt = VSUB(Tj, Ti);
Chris@10 197 }
Chris@10 198 Tg = VADD(Tc, Tf);
Chris@10 199 Tl = VADD(Th, Tk);
Chris@10 200 TI = VADD(Ts, Tt);
Chris@10 201 TA = VFNMS(LDK(KP500000000), Tk, Th);
Chris@10 202 Tz = VFNMS(LDK(KP500000000), Tf, Tc);
Chris@10 203 Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt));
Chris@10 204 }
Chris@10 205 {
Chris@10 206 V Tb, Tm, Tn, To;
Chris@10 207 Tb = VSUB(T5, Ta);
Chris@10 208 Tm = VBYI(VSUB(Tg, Tl));
Chris@10 209 ST(&(xo[WS(os, 9)]), VSUB(Tb, Tm), ovs, &(xo[WS(os, 1)]));
Chris@10 210 ST(&(xo[WS(os, 3)]), VADD(Tb, Tm), ovs, &(xo[WS(os, 1)]));
Chris@10 211 Tn = VADD(T5, Ta);
Chris@10 212 To = VADD(Tg, Tl);
Chris@10 213 ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
Chris@10 214 ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
Chris@10 215 }
Chris@10 216 {
Chris@10 217 V Tv, TE, TC, TD, Tr, TB;
Chris@10 218 Tr = VSUB(Tp, Tq);
Chris@10 219 Tv = VSUB(Tr, Tu);
Chris@10 220 TE = VADD(Tr, Tu);
Chris@10 221 TB = VSUB(Tz, TA);
Chris@10 222 TC = VBYI(VADD(Ty, TB));
Chris@10 223 TD = VBYI(VSUB(Ty, TB));
Chris@10 224 ST(&(xo[WS(os, 5)]), VSUB(Tv, TC), ovs, &(xo[WS(os, 1)]));
Chris@10 225 ST(&(xo[WS(os, 11)]), VSUB(TE, TD), ovs, &(xo[WS(os, 1)]));
Chris@10 226 ST(&(xo[WS(os, 7)]), VADD(TC, Tv), ovs, &(xo[WS(os, 1)]));
Chris@10 227 ST(&(xo[WS(os, 1)]), VADD(TD, TE), ovs, &(xo[WS(os, 1)]));
Chris@10 228 }
Chris@10 229 {
Chris@10 230 V TK, TM, TH, TL, TF, TG;
Chris@10 231 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ)));
Chris@10 232 TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI)));
Chris@10 233 TF = VADD(Tp, Tq);
Chris@10 234 TG = VADD(Tz, TA);
Chris@10 235 TH = VSUB(TF, TG);
Chris@10 236 TL = VADD(TF, TG);
Chris@10 237 ST(&(xo[WS(os, 10)]), VSUB(TH, TK), ovs, &(xo[0]));
Chris@10 238 ST(&(xo[WS(os, 4)]), VADD(TL, TM), ovs, &(xo[0]));
Chris@10 239 ST(&(xo[WS(os, 2)]), VADD(TH, TK), ovs, &(xo[0]));
Chris@10 240 ST(&(xo[WS(os, 8)]), VSUB(TL, TM), ovs, &(xo[0]));
Chris@10 241 }
Chris@10 242 }
Chris@10 243 }
Chris@10 244 VLEAVE();
Chris@10 245 }
Chris@10 246
Chris@10 247 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 248
Chris@10 249 void XSIMD(codelet_n1fv_12) (planner *p) {
Chris@10 250 X(kdft_register) (p, n1fv_12, &desc);
Chris@10 251 }
Chris@10 252
Chris@10 253 #endif /* HAVE_FMA */