Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:36:52 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 48 FP additions, 20 FP multiplications,
|
Chris@10
|
32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
|
Chris@10
|
33 * 49 stack variables, 2 constants, and 24 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "n1f.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
41 {
|
Chris@10
|
42 INT i;
|
Chris@10
|
43 const R *xi;
|
Chris@10
|
44 R *xo;
|
Chris@10
|
45 xi = ri;
|
Chris@10
|
46 xo = ro;
|
Chris@10
|
47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
|
Chris@10
|
48 V T1, T6, Tk, Tn, Tc, Td, Tf, Tr, T4, Ts, T9, Tg, Te, Tl;
|
Chris@10
|
49 {
|
Chris@10
|
50 V T2, T3, T7, T8;
|
Chris@10
|
51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
Chris@10
|
52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
Chris@10
|
53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
Chris@10
|
54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
Chris@10
|
55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
|
Chris@10
|
56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
Chris@10
|
57 Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
58 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
59 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
60 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
61 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
62 Tr = VSUB(T3, T2);
|
Chris@10
|
63 T4 = VADD(T2, T3);
|
Chris@10
|
64 Ts = VSUB(T8, T7);
|
Chris@10
|
65 T9 = VADD(T7, T8);
|
Chris@10
|
66 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
67 }
|
Chris@10
|
68 Te = VSUB(Tc, Td);
|
Chris@10
|
69 Tl = VADD(Td, Tc);
|
Chris@10
|
70 {
|
Chris@10
|
71 V T5, TF, TB, Tt, Ta, TG, Th, To, Tm, TI;
|
Chris@10
|
72 T5 = VFNMS(LDK(KP500000000), T4, T1);
|
Chris@10
|
73 TF = VADD(T1, T4);
|
Chris@10
|
74 TB = VADD(Tr, Ts);
|
Chris@10
|
75 Tt = VSUB(Tr, Ts);
|
Chris@10
|
76 Ta = VFNMS(LDK(KP500000000), T9, T6);
|
Chris@10
|
77 TG = VADD(T6, T9);
|
Chris@10
|
78 Th = VSUB(Tf, Tg);
|
Chris@10
|
79 To = VADD(Tf, Tg);
|
Chris@10
|
80 Tm = VFNMS(LDK(KP500000000), Tl, Tk);
|
Chris@10
|
81 TI = VADD(Tk, Tl);
|
Chris@10
|
82 {
|
Chris@10
|
83 V TH, TL, Tb, Tx, TJ, Tp, Ti, TA;
|
Chris@10
|
84 TH = VSUB(TF, TG);
|
Chris@10
|
85 TL = VADD(TF, TG);
|
Chris@10
|
86 Tb = VSUB(T5, Ta);
|
Chris@10
|
87 Tx = VADD(T5, Ta);
|
Chris@10
|
88 TJ = VADD(Tn, To);
|
Chris@10
|
89 Tp = VFNMS(LDK(KP500000000), To, Tn);
|
Chris@10
|
90 Ti = VADD(Te, Th);
|
Chris@10
|
91 TA = VSUB(Te, Th);
|
Chris@10
|
92 {
|
Chris@10
|
93 V Tq, Ty, TK, TM;
|
Chris@10
|
94 Tq = VSUB(Tm, Tp);
|
Chris@10
|
95 Ty = VADD(Tm, Tp);
|
Chris@10
|
96 TK = VSUB(TI, TJ);
|
Chris@10
|
97 TM = VADD(TI, TJ);
|
Chris@10
|
98 {
|
Chris@10
|
99 V TC, TE, Tj, Tv;
|
Chris@10
|
100 TC = VMUL(LDK(KP866025403), VSUB(TA, TB));
|
Chris@10
|
101 TE = VMUL(LDK(KP866025403), VADD(TB, TA));
|
Chris@10
|
102 Tj = VFMA(LDK(KP866025403), Ti, Tb);
|
Chris@10
|
103 Tv = VFNMS(LDK(KP866025403), Ti, Tb);
|
Chris@10
|
104 {
|
Chris@10
|
105 V Tz, TD, Tu, Tw;
|
Chris@10
|
106 Tz = VSUB(Tx, Ty);
|
Chris@10
|
107 TD = VADD(Tx, Ty);
|
Chris@10
|
108 Tu = VFNMS(LDK(KP866025403), Tt, Tq);
|
Chris@10
|
109 Tw = VFMA(LDK(KP866025403), Tt, Tq);
|
Chris@10
|
110 ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
|
Chris@10
|
111 ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
|
Chris@10
|
112 ST(&(xo[WS(os, 3)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
113 ST(&(xo[WS(os, 9)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
114 ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
|
Chris@10
|
115 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
|
Chris@10
|
116 ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tz), ovs, &(xo[0]));
|
Chris@10
|
117 ST(&(xo[WS(os, 2)]), VFMAI(TC, Tz), ovs, &(xo[0]));
|
Chris@10
|
118 ST(&(xo[WS(os, 5)]), VFNMSI(Tw, Tv), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
119 ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tv), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
120 ST(&(xo[WS(os, 11)]), VFMAI(Tu, Tj), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
121 ST(&(xo[WS(os, 1)]), VFNMSI(Tu, Tj), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
122 }
|
Chris@10
|
123 }
|
Chris@10
|
124 }
|
Chris@10
|
125 }
|
Chris@10
|
126 }
|
Chris@10
|
127 }
|
Chris@10
|
128 }
|
Chris@10
|
129 VLEAVE();
|
Chris@10
|
130 }
|
Chris@10
|
131
|
Chris@10
|
132 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 };
|
Chris@10
|
133
|
Chris@10
|
134 void XSIMD(codelet_n1fv_12) (planner *p) {
|
Chris@10
|
135 X(kdft_register) (p, n1fv_12, &desc);
|
Chris@10
|
136 }
|
Chris@10
|
137
|
Chris@10
|
138 #else /* HAVE_FMA */
|
Chris@10
|
139
|
Chris@10
|
140 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */
|
Chris@10
|
141
|
Chris@10
|
142 /*
|
Chris@10
|
143 * This function contains 48 FP additions, 8 FP multiplications,
|
Chris@10
|
144 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
|
Chris@10
|
145 * 27 stack variables, 2 constants, and 24 memory accesses
|
Chris@10
|
146 */
|
Chris@10
|
147 #include "n1f.h"
|
Chris@10
|
148
|
Chris@10
|
149 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
Chris@10
|
150 {
|
Chris@10
|
151 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
152 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
153 {
|
Chris@10
|
154 INT i;
|
Chris@10
|
155 const R *xi;
|
Chris@10
|
156 R *xo;
|
Chris@10
|
157 xi = ri;
|
Chris@10
|
158 xo = ro;
|
Chris@10
|
159 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
|
Chris@10
|
160 V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu;
|
Chris@10
|
161 {
|
Chris@10
|
162 V T1, T6, T4, Tw, T9, Tx;
|
Chris@10
|
163 T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
Chris@10
|
164 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
Chris@10
|
165 {
|
Chris@10
|
166 V T2, T3, T7, T8;
|
Chris@10
|
167 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
Chris@10
|
168 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
Chris@10
|
169 T4 = VADD(T2, T3);
|
Chris@10
|
170 Tw = VSUB(T3, T2);
|
Chris@10
|
171 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
|
Chris@10
|
172 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
Chris@10
|
173 T9 = VADD(T7, T8);
|
Chris@10
|
174 Tx = VSUB(T8, T7);
|
Chris@10
|
175 }
|
Chris@10
|
176 T5 = VADD(T1, T4);
|
Chris@10
|
177 Ta = VADD(T6, T9);
|
Chris@10
|
178 TJ = VADD(Tw, Tx);
|
Chris@10
|
179 Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx));
|
Chris@10
|
180 Tq = VFNMS(LDK(KP500000000), T9, T6);
|
Chris@10
|
181 Tp = VFNMS(LDK(KP500000000), T4, T1);
|
Chris@10
|
182 }
|
Chris@10
|
183 {
|
Chris@10
|
184 V Tc, Th, Tf, Ts, Tk, Tt;
|
Chris@10
|
185 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
186 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
187 {
|
Chris@10
|
188 V Td, Te, Ti, Tj;
|
Chris@10
|
189 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
190 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
191 Tf = VADD(Td, Te);
|
Chris@10
|
192 Ts = VSUB(Te, Td);
|
Chris@10
|
193 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
194 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
195 Tk = VADD(Ti, Tj);
|
Chris@10
|
196 Tt = VSUB(Tj, Ti);
|
Chris@10
|
197 }
|
Chris@10
|
198 Tg = VADD(Tc, Tf);
|
Chris@10
|
199 Tl = VADD(Th, Tk);
|
Chris@10
|
200 TI = VADD(Ts, Tt);
|
Chris@10
|
201 TA = VFNMS(LDK(KP500000000), Tk, Th);
|
Chris@10
|
202 Tz = VFNMS(LDK(KP500000000), Tf, Tc);
|
Chris@10
|
203 Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt));
|
Chris@10
|
204 }
|
Chris@10
|
205 {
|
Chris@10
|
206 V Tb, Tm, Tn, To;
|
Chris@10
|
207 Tb = VSUB(T5, Ta);
|
Chris@10
|
208 Tm = VBYI(VSUB(Tg, Tl));
|
Chris@10
|
209 ST(&(xo[WS(os, 9)]), VSUB(Tb, Tm), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
210 ST(&(xo[WS(os, 3)]), VADD(Tb, Tm), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
211 Tn = VADD(T5, Ta);
|
Chris@10
|
212 To = VADD(Tg, Tl);
|
Chris@10
|
213 ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
|
Chris@10
|
214 ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
|
Chris@10
|
215 }
|
Chris@10
|
216 {
|
Chris@10
|
217 V Tv, TE, TC, TD, Tr, TB;
|
Chris@10
|
218 Tr = VSUB(Tp, Tq);
|
Chris@10
|
219 Tv = VSUB(Tr, Tu);
|
Chris@10
|
220 TE = VADD(Tr, Tu);
|
Chris@10
|
221 TB = VSUB(Tz, TA);
|
Chris@10
|
222 TC = VBYI(VADD(Ty, TB));
|
Chris@10
|
223 TD = VBYI(VSUB(Ty, TB));
|
Chris@10
|
224 ST(&(xo[WS(os, 5)]), VSUB(Tv, TC), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
225 ST(&(xo[WS(os, 11)]), VSUB(TE, TD), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
226 ST(&(xo[WS(os, 7)]), VADD(TC, Tv), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
227 ST(&(xo[WS(os, 1)]), VADD(TD, TE), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
228 }
|
Chris@10
|
229 {
|
Chris@10
|
230 V TK, TM, TH, TL, TF, TG;
|
Chris@10
|
231 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ)));
|
Chris@10
|
232 TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI)));
|
Chris@10
|
233 TF = VADD(Tp, Tq);
|
Chris@10
|
234 TG = VADD(Tz, TA);
|
Chris@10
|
235 TH = VSUB(TF, TG);
|
Chris@10
|
236 TL = VADD(TF, TG);
|
Chris@10
|
237 ST(&(xo[WS(os, 10)]), VSUB(TH, TK), ovs, &(xo[0]));
|
Chris@10
|
238 ST(&(xo[WS(os, 4)]), VADD(TL, TM), ovs, &(xo[0]));
|
Chris@10
|
239 ST(&(xo[WS(os, 2)]), VADD(TH, TK), ovs, &(xo[0]));
|
Chris@10
|
240 ST(&(xo[WS(os, 8)]), VSUB(TL, TM), ovs, &(xo[0]));
|
Chris@10
|
241 }
|
Chris@10
|
242 }
|
Chris@10
|
243 }
|
Chris@10
|
244 VLEAVE();
|
Chris@10
|
245 }
|
Chris@10
|
246
|
Chris@10
|
247 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 };
|
Chris@10
|
248
|
Chris@10
|
249 void XSIMD(codelet_n1fv_12) (planner *p) {
|
Chris@10
|
250 X(kdft_register) (p, n1fv_12, &desc);
|
Chris@10
|
251 }
|
Chris@10
|
252
|
Chris@10
|
253 #endif /* HAVE_FMA */
|