Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:36:52 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name n1fv_10 -include n1f.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 42 FP additions, 22 FP multiplications,
|
Chris@10
|
32 * (or, 24 additions, 4 multiplications, 18 fused multiply/add),
|
Chris@10
|
33 * 43 stack variables, 4 constants, and 20 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "n1f.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void n1fv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
43 {
|
Chris@10
|
44 INT i;
|
Chris@10
|
45 const R *xi;
|
Chris@10
|
46 R *xo;
|
Chris@10
|
47 xi = ri;
|
Chris@10
|
48 xo = ro;
|
Chris@10
|
49 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
|
Chris@10
|
50 V Tb, Tr, T3, Ts, T6, Tw, Tg, Tt, T9, Tc, T1, T2;
|
Chris@10
|
51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
Chris@10
|
52 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
53 {
|
Chris@10
|
54 V T4, T5, Te, Tf, T7, T8;
|
Chris@10
|
55 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
Chris@10
|
56 T5 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
57 Te = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
Chris@10
|
58 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
59 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
Chris@10
|
60 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
61 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
Chris@10
|
62 Tr = VADD(T1, T2);
|
Chris@10
|
63 T3 = VSUB(T1, T2);
|
Chris@10
|
64 Ts = VADD(T4, T5);
|
Chris@10
|
65 T6 = VSUB(T4, T5);
|
Chris@10
|
66 Tw = VADD(Te, Tf);
|
Chris@10
|
67 Tg = VSUB(Te, Tf);
|
Chris@10
|
68 Tt = VADD(T7, T8);
|
Chris@10
|
69 T9 = VSUB(T7, T8);
|
Chris@10
|
70 Tc = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
71 }
|
Chris@10
|
72 {
|
Chris@10
|
73 V TD, Tu, Tm, Ta, Td, Tv;
|
Chris@10
|
74 TD = VSUB(Ts, Tt);
|
Chris@10
|
75 Tu = VADD(Ts, Tt);
|
Chris@10
|
76 Tm = VSUB(T6, T9);
|
Chris@10
|
77 Ta = VADD(T6, T9);
|
Chris@10
|
78 Td = VSUB(Tb, Tc);
|
Chris@10
|
79 Tv = VADD(Tb, Tc);
|
Chris@10
|
80 {
|
Chris@10
|
81 V TC, Tx, Tn, Th;
|
Chris@10
|
82 TC = VSUB(Tv, Tw);
|
Chris@10
|
83 Tx = VADD(Tv, Tw);
|
Chris@10
|
84 Tn = VSUB(Td, Tg);
|
Chris@10
|
85 Th = VADD(Td, Tg);
|
Chris@10
|
86 {
|
Chris@10
|
87 V Ty, TA, TE, TG, Ti, Tk, To, Tq, Tz, Tj;
|
Chris@10
|
88 Ty = VADD(Tu, Tx);
|
Chris@10
|
89 TA = VSUB(Tu, Tx);
|
Chris@10
|
90 TE = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TD, TC));
|
Chris@10
|
91 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TC, TD));
|
Chris@10
|
92 Ti = VADD(Ta, Th);
|
Chris@10
|
93 Tk = VSUB(Ta, Th);
|
Chris@10
|
94 To = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, Tm));
|
Chris@10
|
95 Tq = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tm, Tn));
|
Chris@10
|
96 Tz = VFNMS(LDK(KP250000000), Ty, Tr);
|
Chris@10
|
97 ST(&(xo[0]), VADD(Tr, Ty), ovs, &(xo[0]));
|
Chris@10
|
98 Tj = VFNMS(LDK(KP250000000), Ti, T3);
|
Chris@10
|
99 ST(&(xo[WS(os, 5)]), VADD(T3, Ti), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
100 {
|
Chris@10
|
101 V TB, TF, Tl, Tp;
|
Chris@10
|
102 TB = VFNMS(LDK(KP559016994), TA, Tz);
|
Chris@10
|
103 TF = VFMA(LDK(KP559016994), TA, Tz);
|
Chris@10
|
104 Tl = VFMA(LDK(KP559016994), Tk, Tj);
|
Chris@10
|
105 Tp = VFNMS(LDK(KP559016994), Tk, Tj);
|
Chris@10
|
106 ST(&(xo[WS(os, 4)]), VFMAI(TG, TF), ovs, &(xo[0]));
|
Chris@10
|
107 ST(&(xo[WS(os, 6)]), VFNMSI(TG, TF), ovs, &(xo[0]));
|
Chris@10
|
108 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TB), ovs, &(xo[0]));
|
Chris@10
|
109 ST(&(xo[WS(os, 2)]), VFMAI(TE, TB), ovs, &(xo[0]));
|
Chris@10
|
110 ST(&(xo[WS(os, 3)]), VFNMSI(Tq, Tp), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
111 ST(&(xo[WS(os, 7)]), VFMAI(Tq, Tp), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
112 ST(&(xo[WS(os, 9)]), VFMAI(To, Tl), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
113 ST(&(xo[WS(os, 1)]), VFNMSI(To, Tl), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
114 }
|
Chris@10
|
115 }
|
Chris@10
|
116 }
|
Chris@10
|
117 }
|
Chris@10
|
118 }
|
Chris@10
|
119 }
|
Chris@10
|
120 VLEAVE();
|
Chris@10
|
121 }
|
Chris@10
|
122
|
Chris@10
|
123 static const kdft_desc desc = { 10, XSIMD_STRING("n1fv_10"), {24, 4, 18, 0}, &GENUS, 0, 0, 0, 0 };
|
Chris@10
|
124
|
Chris@10
|
125 void XSIMD(codelet_n1fv_10) (planner *p) {
|
Chris@10
|
126 X(kdft_register) (p, n1fv_10, &desc);
|
Chris@10
|
127 }
|
Chris@10
|
128
|
Chris@10
|
129 #else /* HAVE_FMA */
|
Chris@10
|
130
|
Chris@10
|
131 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name n1fv_10 -include n1f.h */
|
Chris@10
|
132
|
Chris@10
|
133 /*
|
Chris@10
|
134 * This function contains 42 FP additions, 12 FP multiplications,
|
Chris@10
|
135 * (or, 36 additions, 6 multiplications, 6 fused multiply/add),
|
Chris@10
|
136 * 33 stack variables, 4 constants, and 20 memory accesses
|
Chris@10
|
137 */
|
Chris@10
|
138 #include "n1f.h"
|
Chris@10
|
139
|
Chris@10
|
140 static void n1fv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
Chris@10
|
141 {
|
Chris@10
|
142 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
143 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
144 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
Chris@10
|
145 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
146 {
|
Chris@10
|
147 INT i;
|
Chris@10
|
148 const R *xi;
|
Chris@10
|
149 R *xo;
|
Chris@10
|
150 xi = ri;
|
Chris@10
|
151 xo = ro;
|
Chris@10
|
152 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
|
Chris@10
|
153 V Ti, Ty, Tm, Tn, Tw, Tt, Tz, TA, TB, T7, Te, Tj, Tg, Th;
|
Chris@10
|
154 Tg = LD(&(xi[0]), ivs, &(xi[0]));
|
Chris@10
|
155 Th = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
156 Ti = VSUB(Tg, Th);
|
Chris@10
|
157 Ty = VADD(Tg, Th);
|
Chris@10
|
158 {
|
Chris@10
|
159 V T3, Tu, Td, Ts, T6, Tv, Ta, Tr;
|
Chris@10
|
160 {
|
Chris@10
|
161 V T1, T2, Tb, Tc;
|
Chris@10
|
162 T1 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
Chris@10
|
163 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
164 T3 = VSUB(T1, T2);
|
Chris@10
|
165 Tu = VADD(T1, T2);
|
Chris@10
|
166 Tb = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
Chris@10
|
167 Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
168 Td = VSUB(Tb, Tc);
|
Chris@10
|
169 Ts = VADD(Tb, Tc);
|
Chris@10
|
170 }
|
Chris@10
|
171 {
|
Chris@10
|
172 V T4, T5, T8, T9;
|
Chris@10
|
173 T4 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
Chris@10
|
174 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
175 T6 = VSUB(T4, T5);
|
Chris@10
|
176 Tv = VADD(T4, T5);
|
Chris@10
|
177 T8 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
Chris@10
|
178 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
179 Ta = VSUB(T8, T9);
|
Chris@10
|
180 Tr = VADD(T8, T9);
|
Chris@10
|
181 }
|
Chris@10
|
182 Tm = VSUB(T3, T6);
|
Chris@10
|
183 Tn = VSUB(Ta, Td);
|
Chris@10
|
184 Tw = VSUB(Tu, Tv);
|
Chris@10
|
185 Tt = VSUB(Tr, Ts);
|
Chris@10
|
186 Tz = VADD(Tu, Tv);
|
Chris@10
|
187 TA = VADD(Tr, Ts);
|
Chris@10
|
188 TB = VADD(Tz, TA);
|
Chris@10
|
189 T7 = VADD(T3, T6);
|
Chris@10
|
190 Te = VADD(Ta, Td);
|
Chris@10
|
191 Tj = VADD(T7, Te);
|
Chris@10
|
192 }
|
Chris@10
|
193 ST(&(xo[WS(os, 5)]), VADD(Ti, Tj), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
194 ST(&(xo[0]), VADD(Ty, TB), ovs, &(xo[0]));
|
Chris@10
|
195 {
|
Chris@10
|
196 V To, Tq, Tl, Tp, Tf, Tk;
|
Chris@10
|
197 To = VBYI(VFMA(LDK(KP951056516), Tm, VMUL(LDK(KP587785252), Tn)));
|
Chris@10
|
198 Tq = VBYI(VFNMS(LDK(KP587785252), Tm, VMUL(LDK(KP951056516), Tn)));
|
Chris@10
|
199 Tf = VMUL(LDK(KP559016994), VSUB(T7, Te));
|
Chris@10
|
200 Tk = VFNMS(LDK(KP250000000), Tj, Ti);
|
Chris@10
|
201 Tl = VADD(Tf, Tk);
|
Chris@10
|
202 Tp = VSUB(Tk, Tf);
|
Chris@10
|
203 ST(&(xo[WS(os, 1)]), VSUB(Tl, To), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
204 ST(&(xo[WS(os, 7)]), VADD(Tq, Tp), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
205 ST(&(xo[WS(os, 9)]), VADD(To, Tl), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
206 ST(&(xo[WS(os, 3)]), VSUB(Tp, Tq), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
207 }
|
Chris@10
|
208 {
|
Chris@10
|
209 V Tx, TF, TE, TG, TC, TD;
|
Chris@10
|
210 Tx = VBYI(VFNMS(LDK(KP587785252), Tw, VMUL(LDK(KP951056516), Tt)));
|
Chris@10
|
211 TF = VBYI(VFMA(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tt)));
|
Chris@10
|
212 TC = VFNMS(LDK(KP250000000), TB, Ty);
|
Chris@10
|
213 TD = VMUL(LDK(KP559016994), VSUB(Tz, TA));
|
Chris@10
|
214 TE = VSUB(TC, TD);
|
Chris@10
|
215 TG = VADD(TD, TC);
|
Chris@10
|
216 ST(&(xo[WS(os, 2)]), VADD(Tx, TE), ovs, &(xo[0]));
|
Chris@10
|
217 ST(&(xo[WS(os, 6)]), VSUB(TG, TF), ovs, &(xo[0]));
|
Chris@10
|
218 ST(&(xo[WS(os, 8)]), VSUB(TE, Tx), ovs, &(xo[0]));
|
Chris@10
|
219 ST(&(xo[WS(os, 4)]), VADD(TF, TG), ovs, &(xo[0]));
|
Chris@10
|
220 }
|
Chris@10
|
221 }
|
Chris@10
|
222 }
|
Chris@10
|
223 VLEAVE();
|
Chris@10
|
224 }
|
Chris@10
|
225
|
Chris@10
|
226 static const kdft_desc desc = { 10, XSIMD_STRING("n1fv_10"), {36, 6, 6, 0}, &GENUS, 0, 0, 0, 0 };
|
Chris@10
|
227
|
Chris@10
|
228 void XSIMD(codelet_n1fv_10) (planner *p) {
|
Chris@10
|
229 X(kdft_register) (p, n1fv_10, &desc);
|
Chris@10
|
230 }
|
Chris@10
|
231
|
Chris@10
|
232 #endif /* HAVE_FMA */
|