annotate src/fftw-3.3.3/dft/simd/common/n1bv_8.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:36:59 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n1bv_8 -include n1b.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 26 FP additions, 10 FP multiplications,
Chris@10 32 * (or, 16 additions, 0 multiplications, 10 fused multiply/add),
Chris@10 33 * 30 stack variables, 1 constants, and 16 memory accesses
Chris@10 34 */
Chris@10 35 #include "n1b.h"
Chris@10 36
Chris@10 37 static void n1bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 40 {
Chris@10 41 INT i;
Chris@10 42 const R *xi;
Chris@10 43 R *xo;
Chris@10 44 xi = ii;
Chris@10 45 xo = io;
Chris@10 46 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
Chris@10 47 V T1, T2, Tc, Td, T4, T5, T7, T8;
Chris@10 48 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 49 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 50 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 51 Td = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 52 T4 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 53 T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 54 T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 55 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 56 {
Chris@10 57 V T3, Tj, Te, Tk, T6, Tm, T9, Tn, Tp, Tl;
Chris@10 58 T3 = VSUB(T1, T2);
Chris@10 59 Tj = VADD(T1, T2);
Chris@10 60 Te = VSUB(Tc, Td);
Chris@10 61 Tk = VADD(Tc, Td);
Chris@10 62 T6 = VSUB(T4, T5);
Chris@10 63 Tm = VADD(T4, T5);
Chris@10 64 T9 = VSUB(T7, T8);
Chris@10 65 Tn = VADD(T7, T8);
Chris@10 66 Tp = VADD(Tj, Tk);
Chris@10 67 Tl = VSUB(Tj, Tk);
Chris@10 68 {
Chris@10 69 V Tq, To, Ta, Tf;
Chris@10 70 Tq = VADD(Tm, Tn);
Chris@10 71 To = VSUB(Tm, Tn);
Chris@10 72 Ta = VADD(T6, T9);
Chris@10 73 Tf = VSUB(T6, T9);
Chris@10 74 {
Chris@10 75 V Tg, Ti, Tb, Th;
Chris@10 76 ST(&(xo[WS(os, 2)]), VFMAI(To, Tl), ovs, &(xo[0]));
Chris@10 77 ST(&(xo[WS(os, 6)]), VFNMSI(To, Tl), ovs, &(xo[0]));
Chris@10 78 ST(&(xo[0]), VADD(Tp, Tq), ovs, &(xo[0]));
Chris@10 79 ST(&(xo[WS(os, 4)]), VSUB(Tp, Tq), ovs, &(xo[0]));
Chris@10 80 Tg = VFNMS(LDK(KP707106781), Tf, Te);
Chris@10 81 Ti = VFMA(LDK(KP707106781), Tf, Te);
Chris@10 82 Tb = VFNMS(LDK(KP707106781), Ta, T3);
Chris@10 83 Th = VFMA(LDK(KP707106781), Ta, T3);
Chris@10 84 ST(&(xo[WS(os, 7)]), VFNMSI(Ti, Th), ovs, &(xo[WS(os, 1)]));
Chris@10 85 ST(&(xo[WS(os, 1)]), VFMAI(Ti, Th), ovs, &(xo[WS(os, 1)]));
Chris@10 86 ST(&(xo[WS(os, 5)]), VFMAI(Tg, Tb), ovs, &(xo[WS(os, 1)]));
Chris@10 87 ST(&(xo[WS(os, 3)]), VFNMSI(Tg, Tb), ovs, &(xo[WS(os, 1)]));
Chris@10 88 }
Chris@10 89 }
Chris@10 90 }
Chris@10 91 }
Chris@10 92 }
Chris@10 93 VLEAVE();
Chris@10 94 }
Chris@10 95
Chris@10 96 static const kdft_desc desc = { 8, XSIMD_STRING("n1bv_8"), {16, 0, 10, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 97
Chris@10 98 void XSIMD(codelet_n1bv_8) (planner *p) {
Chris@10 99 X(kdft_register) (p, n1bv_8, &desc);
Chris@10 100 }
Chris@10 101
Chris@10 102 #else /* HAVE_FMA */
Chris@10 103
Chris@10 104 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n1bv_8 -include n1b.h */
Chris@10 105
Chris@10 106 /*
Chris@10 107 * This function contains 26 FP additions, 2 FP multiplications,
Chris@10 108 * (or, 26 additions, 2 multiplications, 0 fused multiply/add),
Chris@10 109 * 22 stack variables, 1 constants, and 16 memory accesses
Chris@10 110 */
Chris@10 111 #include "n1b.h"
Chris@10 112
Chris@10 113 static void n1bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 114 {
Chris@10 115 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 116 {
Chris@10 117 INT i;
Chris@10 118 const R *xi;
Chris@10 119 R *xo;
Chris@10 120 xi = ii;
Chris@10 121 xo = io;
Chris@10 122 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
Chris@10 123 V Ta, Tk, Te, Tj, T7, Tn, Tf, Tm;
Chris@10 124 {
Chris@10 125 V T8, T9, Tc, Td;
Chris@10 126 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 127 T9 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 128 Ta = VSUB(T8, T9);
Chris@10 129 Tk = VADD(T8, T9);
Chris@10 130 Tc = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 131 Td = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 132 Te = VSUB(Tc, Td);
Chris@10 133 Tj = VADD(Tc, Td);
Chris@10 134 {
Chris@10 135 V T1, T2, T3, T4, T5, T6;
Chris@10 136 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 137 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 138 T3 = VSUB(T1, T2);
Chris@10 139 T4 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 140 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 141 T6 = VSUB(T4, T5);
Chris@10 142 T7 = VMUL(LDK(KP707106781), VSUB(T3, T6));
Chris@10 143 Tn = VADD(T4, T5);
Chris@10 144 Tf = VMUL(LDK(KP707106781), VADD(T3, T6));
Chris@10 145 Tm = VADD(T1, T2);
Chris@10 146 }
Chris@10 147 }
Chris@10 148 {
Chris@10 149 V Tb, Tg, Tp, Tq;
Chris@10 150 Tb = VBYI(VSUB(T7, Ta));
Chris@10 151 Tg = VSUB(Te, Tf);
Chris@10 152 ST(&(xo[WS(os, 3)]), VADD(Tb, Tg), ovs, &(xo[WS(os, 1)]));
Chris@10 153 ST(&(xo[WS(os, 5)]), VSUB(Tg, Tb), ovs, &(xo[WS(os, 1)]));
Chris@10 154 Tp = VADD(Tj, Tk);
Chris@10 155 Tq = VADD(Tm, Tn);
Chris@10 156 ST(&(xo[WS(os, 4)]), VSUB(Tp, Tq), ovs, &(xo[0]));
Chris@10 157 ST(&(xo[0]), VADD(Tp, Tq), ovs, &(xo[0]));
Chris@10 158 }
Chris@10 159 {
Chris@10 160 V Th, Ti, Tl, To;
Chris@10 161 Th = VBYI(VADD(Ta, T7));
Chris@10 162 Ti = VADD(Te, Tf);
Chris@10 163 ST(&(xo[WS(os, 1)]), VADD(Th, Ti), ovs, &(xo[WS(os, 1)]));
Chris@10 164 ST(&(xo[WS(os, 7)]), VSUB(Ti, Th), ovs, &(xo[WS(os, 1)]));
Chris@10 165 Tl = VSUB(Tj, Tk);
Chris@10 166 To = VBYI(VSUB(Tm, Tn));
Chris@10 167 ST(&(xo[WS(os, 6)]), VSUB(Tl, To), ovs, &(xo[0]));
Chris@10 168 ST(&(xo[WS(os, 2)]), VADD(Tl, To), ovs, &(xo[0]));
Chris@10 169 }
Chris@10 170 }
Chris@10 171 }
Chris@10 172 VLEAVE();
Chris@10 173 }
Chris@10 174
Chris@10 175 static const kdft_desc desc = { 8, XSIMD_STRING("n1bv_8"), {26, 2, 0, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 176
Chris@10 177 void XSIMD(codelet_n1bv_8) (planner *p) {
Chris@10 178 X(kdft_register) (p, n1bv_8, &desc);
Chris@10 179 }
Chris@10 180
Chris@10 181 #endif /* HAVE_FMA */