annotate src/fftw-3.3.3/dft/simd/common/n1bv_7.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:36:58 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 7 -name n1bv_7 -include n1b.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 30 FP additions, 24 FP multiplications,
Chris@10 32 * (or, 9 additions, 3 multiplications, 21 fused multiply/add),
Chris@10 33 * 37 stack variables, 6 constants, and 14 memory accesses
Chris@10 34 */
Chris@10 35 #include "n1b.h"
Chris@10 36
Chris@10 37 static void n1bv_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@10 40 DVK(KP692021471, +0.692021471630095869627814897002069140197260599);
Chris@10 41 DVK(KP801937735, +0.801937735804838252472204639014890102331838324);
Chris@10 42 DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@10 43 DVK(KP356895867, +0.356895867892209443894399510021300583399127187);
Chris@10 44 DVK(KP554958132, +0.554958132087371191422194871006410481067288862);
Chris@10 45 {
Chris@10 46 INT i;
Chris@10 47 const R *xi;
Chris@10 48 R *xo;
Chris@10 49 xi = ii;
Chris@10 50 xo = io;
Chris@10 51 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(14, is), MAKE_VOLATILE_STRIDE(14, os)) {
Chris@10 52 V T1, T2, T3, T8, T9, T5, T6;
Chris@10 53 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 54 T2 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 55 T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 56 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 57 T9 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 58 T5 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 59 T6 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 60 {
Chris@10 61 V Tg, T4, Te, Ta, Tf, T7;
Chris@10 62 Tg = VSUB(T2, T3);
Chris@10 63 T4 = VADD(T2, T3);
Chris@10 64 Te = VSUB(T8, T9);
Chris@10 65 Ta = VADD(T8, T9);
Chris@10 66 Tf = VSUB(T5, T6);
Chris@10 67 T7 = VADD(T5, T6);
Chris@10 68 {
Chris@10 69 V Tr, Tj, Tm, Th, To, Tb;
Chris@10 70 Tr = VFMA(LDK(KP554958132), Te, Tg);
Chris@10 71 Tj = VFNMS(LDK(KP356895867), T4, Ta);
Chris@10 72 Tm = VFMA(LDK(KP554958132), Tf, Te);
Chris@10 73 Th = VFNMS(LDK(KP554958132), Tg, Tf);
Chris@10 74 ST(&(xo[0]), VADD(T1, VADD(T4, VADD(T7, Ta))), ovs, &(xo[0]));
Chris@10 75 To = VFNMS(LDK(KP356895867), T7, T4);
Chris@10 76 Tb = VFNMS(LDK(KP356895867), Ta, T7);
Chris@10 77 {
Chris@10 78 V Ts, Tk, Tn, Ti;
Chris@10 79 Ts = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), Tr, Tf));
Chris@10 80 Tk = VFNMS(LDK(KP692021471), Tj, T7);
Chris@10 81 Tn = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tm, Tg));
Chris@10 82 Ti = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Th, Te));
Chris@10 83 {
Chris@10 84 V Tp, Tc, Tl, Tq, Td;
Chris@10 85 Tp = VFNMS(LDK(KP692021471), To, Ta);
Chris@10 86 Tc = VFNMS(LDK(KP692021471), Tb, T4);
Chris@10 87 Tl = VFNMS(LDK(KP900968867), Tk, T1);
Chris@10 88 Tq = VFNMS(LDK(KP900968867), Tp, T1);
Chris@10 89 Td = VFNMS(LDK(KP900968867), Tc, T1);
Chris@10 90 ST(&(xo[WS(os, 5)]), VFNMSI(Tn, Tl), ovs, &(xo[WS(os, 1)]));
Chris@10 91 ST(&(xo[WS(os, 2)]), VFMAI(Tn, Tl), ovs, &(xo[0]));
Chris@10 92 ST(&(xo[WS(os, 6)]), VFNMSI(Ts, Tq), ovs, &(xo[0]));
Chris@10 93 ST(&(xo[WS(os, 1)]), VFMAI(Ts, Tq), ovs, &(xo[WS(os, 1)]));
Chris@10 94 ST(&(xo[WS(os, 4)]), VFNMSI(Ti, Td), ovs, &(xo[0]));
Chris@10 95 ST(&(xo[WS(os, 3)]), VFMAI(Ti, Td), ovs, &(xo[WS(os, 1)]));
Chris@10 96 }
Chris@10 97 }
Chris@10 98 }
Chris@10 99 }
Chris@10 100 }
Chris@10 101 }
Chris@10 102 VLEAVE();
Chris@10 103 }
Chris@10 104
Chris@10 105 static const kdft_desc desc = { 7, XSIMD_STRING("n1bv_7"), {9, 3, 21, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 106
Chris@10 107 void XSIMD(codelet_n1bv_7) (planner *p) {
Chris@10 108 X(kdft_register) (p, n1bv_7, &desc);
Chris@10 109 }
Chris@10 110
Chris@10 111 #else /* HAVE_FMA */
Chris@10 112
Chris@10 113 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 7 -name n1bv_7 -include n1b.h */
Chris@10 114
Chris@10 115 /*
Chris@10 116 * This function contains 30 FP additions, 18 FP multiplications,
Chris@10 117 * (or, 18 additions, 6 multiplications, 12 fused multiply/add),
Chris@10 118 * 24 stack variables, 6 constants, and 14 memory accesses
Chris@10 119 */
Chris@10 120 #include "n1b.h"
Chris@10 121
Chris@10 122 static void n1bv_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 123 {
Chris@10 124 DVK(KP222520933, +0.222520933956314404288902564496794759466355569);
Chris@10 125 DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@10 126 DVK(KP623489801, +0.623489801858733530525004884004239810632274731);
Chris@10 127 DVK(KP433883739, +0.433883739117558120475768332848358754609990728);
Chris@10 128 DVK(KP781831482, +0.781831482468029808708444526674057750232334519);
Chris@10 129 DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@10 130 {
Chris@10 131 INT i;
Chris@10 132 const R *xi;
Chris@10 133 R *xo;
Chris@10 134 xi = ii;
Chris@10 135 xo = io;
Chris@10 136 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(14, is), MAKE_VOLATILE_STRIDE(14, os)) {
Chris@10 137 V Tb, T9, Tc, T3, Te, T6, Td, T7, T8, Ti, Tj;
Chris@10 138 Tb = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 139 T7 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 140 T8 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 141 T9 = VSUB(T7, T8);
Chris@10 142 Tc = VADD(T7, T8);
Chris@10 143 {
Chris@10 144 V T1, T2, T4, T5;
Chris@10 145 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 146 T2 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 147 T3 = VSUB(T1, T2);
Chris@10 148 Te = VADD(T1, T2);
Chris@10 149 T4 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 150 T5 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 151 T6 = VSUB(T4, T5);
Chris@10 152 Td = VADD(T4, T5);
Chris@10 153 }
Chris@10 154 ST(&(xo[0]), VADD(Tb, VADD(Te, VADD(Tc, Td))), ovs, &(xo[0]));
Chris@10 155 Ti = VBYI(VFNMS(LDK(KP781831482), T6, VFNMS(LDK(KP433883739), T9, VMUL(LDK(KP974927912), T3))));
Chris@10 156 Tj = VFMA(LDK(KP623489801), Td, VFNMS(LDK(KP900968867), Tc, VFNMS(LDK(KP222520933), Te, Tb)));
Chris@10 157 ST(&(xo[WS(os, 2)]), VADD(Ti, Tj), ovs, &(xo[0]));
Chris@10 158 ST(&(xo[WS(os, 5)]), VSUB(Tj, Ti), ovs, &(xo[WS(os, 1)]));
Chris@10 159 {
Chris@10 160 V Ta, Tf, Tg, Th;
Chris@10 161 Ta = VBYI(VFMA(LDK(KP433883739), T3, VFNMS(LDK(KP781831482), T9, VMUL(LDK(KP974927912), T6))));
Chris@10 162 Tf = VFMA(LDK(KP623489801), Tc, VFNMS(LDK(KP222520933), Td, VFNMS(LDK(KP900968867), Te, Tb)));
Chris@10 163 ST(&(xo[WS(os, 3)]), VADD(Ta, Tf), ovs, &(xo[WS(os, 1)]));
Chris@10 164 ST(&(xo[WS(os, 4)]), VSUB(Tf, Ta), ovs, &(xo[0]));
Chris@10 165 Tg = VBYI(VFMA(LDK(KP781831482), T3, VFMA(LDK(KP974927912), T9, VMUL(LDK(KP433883739), T6))));
Chris@10 166 Th = VFMA(LDK(KP623489801), Te, VFNMS(LDK(KP900968867), Td, VFNMS(LDK(KP222520933), Tc, Tb)));
Chris@10 167 ST(&(xo[WS(os, 1)]), VADD(Tg, Th), ovs, &(xo[WS(os, 1)]));
Chris@10 168 ST(&(xo[WS(os, 6)]), VSUB(Th, Tg), ovs, &(xo[0]));
Chris@10 169 }
Chris@10 170 }
Chris@10 171 }
Chris@10 172 VLEAVE();
Chris@10 173 }
Chris@10 174
Chris@10 175 static const kdft_desc desc = { 7, XSIMD_STRING("n1bv_7"), {18, 6, 12, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 176
Chris@10 177 void XSIMD(codelet_n1bv_7) (planner *p) {
Chris@10 178 X(kdft_register) (p, n1bv_7, &desc);
Chris@10 179 }
Chris@10 180
Chris@10 181 #endif /* HAVE_FMA */