annotate src/fftw-3.3.3/dft/simd/common/n1bv_15.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:37:04 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 15 -name n1bv_15 -include n1b.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 78 FP additions, 49 FP multiplications,
Chris@10 32 * (or, 36 additions, 7 multiplications, 42 fused multiply/add),
Chris@10 33 * 78 stack variables, 8 constants, and 30 memory accesses
Chris@10 34 */
Chris@10 35 #include "n1b.h"
Chris@10 36
Chris@10 37 static void n1bv_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
Chris@10 40 DVK(KP910592997, +0.910592997310029334643087372129977886038870291);
Chris@10 41 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 43 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 44 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 45 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@10 46 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 47 {
Chris@10 48 INT i;
Chris@10 49 const R *xi;
Chris@10 50 R *xo;
Chris@10 51 xi = ii;
Chris@10 52 xo = io;
Chris@10 53 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(30, is), MAKE_VOLATILE_STRIDE(30, os)) {
Chris@10 54 V Tb, TH, Tw, TA, Th, T11, T5, Ti, T12, Ta, Tx, Te, Tq, T16, Tj;
Chris@10 55 V T1, T2, T3;
Chris@10 56 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 57 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 58 T3 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@10 59 {
Chris@10 60 V T6, T7, T8, Tm, Tn, To;
Chris@10 61 T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 62 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 63 T8 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
Chris@10 64 Tm = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@10 65 Tn = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
Chris@10 66 To = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 67 {
Chris@10 68 V T4, Tc, T9, Td, Tp;
Chris@10 69 Tb = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
Chris@10 70 T4 = VADD(T2, T3);
Chris@10 71 TH = VSUB(T2, T3);
Chris@10 72 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 73 Tw = VSUB(T7, T8);
Chris@10 74 T9 = VADD(T7, T8);
Chris@10 75 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 76 Tp = VADD(Tn, To);
Chris@10 77 TA = VSUB(Tn, To);
Chris@10 78 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 79 T11 = VADD(T1, T4);
Chris@10 80 T5 = VFNMS(LDK(KP500000000), T4, T1);
Chris@10 81 Ti = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@10 82 T12 = VADD(T6, T9);
Chris@10 83 Ta = VFNMS(LDK(KP500000000), T9, T6);
Chris@10 84 Tx = VSUB(Tc, Td);
Chris@10 85 Te = VADD(Tc, Td);
Chris@10 86 Tq = VFNMS(LDK(KP500000000), Tp, Tm);
Chris@10 87 T16 = VADD(Tm, Tp);
Chris@10 88 Tj = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 89 }
Chris@10 90 }
Chris@10 91 {
Chris@10 92 V TI, Ty, T13, Tf, Tz, Tk;
Chris@10 93 TI = VADD(Tw, Tx);
Chris@10 94 Ty = VSUB(Tw, Tx);
Chris@10 95 T13 = VADD(Tb, Te);
Chris@10 96 Tf = VFNMS(LDK(KP500000000), Te, Tb);
Chris@10 97 Tz = VSUB(Ti, Tj);
Chris@10 98 Tk = VADD(Ti, Tj);
Chris@10 99 {
Chris@10 100 V T1d, T14, Tg, TE, TJ, TB, T15, Tl;
Chris@10 101 T1d = VSUB(T12, T13);
Chris@10 102 T14 = VADD(T12, T13);
Chris@10 103 Tg = VADD(Ta, Tf);
Chris@10 104 TE = VSUB(Ta, Tf);
Chris@10 105 TJ = VADD(Tz, TA);
Chris@10 106 TB = VSUB(Tz, TA);
Chris@10 107 T15 = VADD(Th, Tk);
Chris@10 108 Tl = VFNMS(LDK(KP500000000), Tk, Th);
Chris@10 109 {
Chris@10 110 V TM, TK, TS, TC, T1c, T17, Tr, TF, TL, T10;
Chris@10 111 TM = VSUB(TI, TJ);
Chris@10 112 TK = VADD(TI, TJ);
Chris@10 113 TS = VFNMS(LDK(KP618033988), Ty, TB);
Chris@10 114 TC = VFMA(LDK(KP618033988), TB, Ty);
Chris@10 115 T1c = VSUB(T15, T16);
Chris@10 116 T17 = VADD(T15, T16);
Chris@10 117 Tr = VADD(Tl, Tq);
Chris@10 118 TF = VSUB(Tl, Tq);
Chris@10 119 TL = VFNMS(LDK(KP250000000), TK, TH);
Chris@10 120 T10 = VMUL(LDK(KP866025403), VADD(TH, TK));
Chris@10 121 {
Chris@10 122 V T1g, T1e, T1a, Tu, Ts, TU, TG, TV, TN, T19, T18, Tt, TZ;
Chris@10 123 T1g = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1c, T1d));
Chris@10 124 T1e = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1d, T1c));
Chris@10 125 T18 = VADD(T14, T17);
Chris@10 126 T1a = VSUB(T14, T17);
Chris@10 127 Tu = VSUB(Tg, Tr);
Chris@10 128 Ts = VADD(Tg, Tr);
Chris@10 129 TU = VFNMS(LDK(KP618033988), TE, TF);
Chris@10 130 TG = VFMA(LDK(KP618033988), TF, TE);
Chris@10 131 TV = VFNMS(LDK(KP559016994), TM, TL);
Chris@10 132 TN = VFMA(LDK(KP559016994), TM, TL);
Chris@10 133 ST(&(xo[0]), VADD(T11, T18), ovs, &(xo[0]));
Chris@10 134 T19 = VFNMS(LDK(KP250000000), T18, T11);
Chris@10 135 Tt = VFNMS(LDK(KP250000000), Ts, T5);
Chris@10 136 TZ = VADD(T5, Ts);
Chris@10 137 {
Chris@10 138 V TW, TY, TQ, TO, T1b, T1f, TR, Tv;
Chris@10 139 TW = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), TV, TU));
Chris@10 140 TY = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), TV, TU));
Chris@10 141 TQ = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), TN, TG));
Chris@10 142 TO = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), TN, TG));
Chris@10 143 T1b = VFNMS(LDK(KP559016994), T1a, T19);
Chris@10 144 T1f = VFMA(LDK(KP559016994), T1a, T19);
Chris@10 145 TR = VFNMS(LDK(KP559016994), Tu, Tt);
Chris@10 146 Tv = VFMA(LDK(KP559016994), Tu, Tt);
Chris@10 147 ST(&(xo[WS(os, 10)]), VFMAI(T10, TZ), ovs, &(xo[0]));
Chris@10 148 ST(&(xo[WS(os, 5)]), VFNMSI(T10, TZ), ovs, &(xo[WS(os, 1)]));
Chris@10 149 {
Chris@10 150 V TT, TX, TP, TD;
Chris@10 151 ST(&(xo[WS(os, 12)]), VFNMSI(T1e, T1b), ovs, &(xo[0]));
Chris@10 152 ST(&(xo[WS(os, 3)]), VFMAI(T1e, T1b), ovs, &(xo[WS(os, 1)]));
Chris@10 153 ST(&(xo[WS(os, 9)]), VFNMSI(T1g, T1f), ovs, &(xo[WS(os, 1)]));
Chris@10 154 ST(&(xo[WS(os, 6)]), VFMAI(T1g, T1f), ovs, &(xo[0]));
Chris@10 155 TT = VFNMS(LDK(KP823639103), TS, TR);
Chris@10 156 TX = VFMA(LDK(KP823639103), TS, TR);
Chris@10 157 TP = VFMA(LDK(KP823639103), TC, Tv);
Chris@10 158 TD = VFNMS(LDK(KP823639103), TC, Tv);
Chris@10 159 ST(&(xo[WS(os, 13)]), VFMAI(TW, TT), ovs, &(xo[WS(os, 1)]));
Chris@10 160 ST(&(xo[WS(os, 2)]), VFNMSI(TW, TT), ovs, &(xo[0]));
Chris@10 161 ST(&(xo[WS(os, 8)]), VFMAI(TY, TX), ovs, &(xo[0]));
Chris@10 162 ST(&(xo[WS(os, 7)]), VFNMSI(TY, TX), ovs, &(xo[WS(os, 1)]));
Chris@10 163 ST(&(xo[WS(os, 11)]), VFMAI(TQ, TP), ovs, &(xo[WS(os, 1)]));
Chris@10 164 ST(&(xo[WS(os, 4)]), VFNMSI(TQ, TP), ovs, &(xo[0]));
Chris@10 165 ST(&(xo[WS(os, 14)]), VFNMSI(TO, TD), ovs, &(xo[0]));
Chris@10 166 ST(&(xo[WS(os, 1)]), VFMAI(TO, TD), ovs, &(xo[WS(os, 1)]));
Chris@10 167 }
Chris@10 168 }
Chris@10 169 }
Chris@10 170 }
Chris@10 171 }
Chris@10 172 }
Chris@10 173 }
Chris@10 174 }
Chris@10 175 VLEAVE();
Chris@10 176 }
Chris@10 177
Chris@10 178 static const kdft_desc desc = { 15, XSIMD_STRING("n1bv_15"), {36, 7, 42, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 179
Chris@10 180 void XSIMD(codelet_n1bv_15) (planner *p) {
Chris@10 181 X(kdft_register) (p, n1bv_15, &desc);
Chris@10 182 }
Chris@10 183
Chris@10 184 #else /* HAVE_FMA */
Chris@10 185
Chris@10 186 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 15 -name n1bv_15 -include n1b.h */
Chris@10 187
Chris@10 188 /*
Chris@10 189 * This function contains 78 FP additions, 25 FP multiplications,
Chris@10 190 * (or, 64 additions, 11 multiplications, 14 fused multiply/add),
Chris@10 191 * 55 stack variables, 10 constants, and 30 memory accesses
Chris@10 192 */
Chris@10 193 #include "n1b.h"
Chris@10 194
Chris@10 195 static void n1bv_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 196 {
Chris@10 197 DVK(KP216506350, +0.216506350946109661690930792688234045867850657);
Chris@10 198 DVK(KP509036960, +0.509036960455127183450980863393907648510733164);
Chris@10 199 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
Chris@10 200 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@10 201 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@10 202 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 203 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@10 204 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 205 DVK(KP484122918, +0.484122918275927110647408174972799951354115213);
Chris@10 206 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 207 {
Chris@10 208 INT i;
Chris@10 209 const R *xi;
Chris@10 210 R *xo;
Chris@10 211 xi = ii;
Chris@10 212 xo = io;
Chris@10 213 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(30, is), MAKE_VOLATILE_STRIDE(30, os)) {
Chris@10 214 V Ti, T11, TH, Ts, TL, TM, Tz, TC, TD, TI, T12, T13, T14, T15, T16;
Chris@10 215 V T17, Tf, Tj, TZ, T10;
Chris@10 216 {
Chris@10 217 V TF, Tg, Th, TG;
Chris@10 218 TF = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 219 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 220 Th = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@10 221 TG = VADD(Tg, Th);
Chris@10 222 Ti = VSUB(Tg, Th);
Chris@10 223 T11 = VADD(TF, TG);
Chris@10 224 TH = VFNMS(LDK(KP500000000), TG, TF);
Chris@10 225 }
Chris@10 226 {
Chris@10 227 V Tm, Tn, T3, To, Tw, Tx, Td, Ty, Tp, Tq, T6, Tr, Tt, Tu, Ta;
Chris@10 228 V Tv, T7, Te;
Chris@10 229 {
Chris@10 230 V T1, T2, Tb, Tc;
Chris@10 231 Tm = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 232 T1 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 233 T2 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
Chris@10 234 Tn = VADD(T1, T2);
Chris@10 235 T3 = VSUB(T1, T2);
Chris@10 236 To = VFNMS(LDK(KP500000000), Tn, Tm);
Chris@10 237 Tw = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@10 238 Tb = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
Chris@10 239 Tc = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 240 Tx = VADD(Tb, Tc);
Chris@10 241 Td = VSUB(Tb, Tc);
Chris@10 242 Ty = VFNMS(LDK(KP500000000), Tx, Tw);
Chris@10 243 }
Chris@10 244 {
Chris@10 245 V T4, T5, T8, T9;
Chris@10 246 Tp = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
Chris@10 247 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 248 T5 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 249 Tq = VADD(T4, T5);
Chris@10 250 T6 = VSUB(T4, T5);
Chris@10 251 Tr = VFNMS(LDK(KP500000000), Tq, Tp);
Chris@10 252 Tt = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 253 T8 = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@10 254 T9 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 255 Tu = VADD(T8, T9);
Chris@10 256 Ta = VSUB(T8, T9);
Chris@10 257 Tv = VFNMS(LDK(KP500000000), Tu, Tt);
Chris@10 258 }
Chris@10 259 Ts = VSUB(To, Tr);
Chris@10 260 TL = VSUB(T3, T6);
Chris@10 261 TM = VSUB(Ta, Td);
Chris@10 262 Tz = VSUB(Tv, Ty);
Chris@10 263 TC = VADD(To, Tr);
Chris@10 264 TD = VADD(Tv, Ty);
Chris@10 265 TI = VADD(TC, TD);
Chris@10 266 T12 = VADD(Tm, Tn);
Chris@10 267 T13 = VADD(Tp, Tq);
Chris@10 268 T14 = VADD(T12, T13);
Chris@10 269 T15 = VADD(Tt, Tu);
Chris@10 270 T16 = VADD(Tw, Tx);
Chris@10 271 T17 = VADD(T15, T16);
Chris@10 272 T7 = VADD(T3, T6);
Chris@10 273 Te = VADD(Ta, Td);
Chris@10 274 Tf = VMUL(LDK(KP484122918), VSUB(T7, Te));
Chris@10 275 Tj = VADD(T7, Te);
Chris@10 276 }
Chris@10 277 TZ = VADD(TH, TI);
Chris@10 278 T10 = VBYI(VMUL(LDK(KP866025403), VADD(Ti, Tj)));
Chris@10 279 ST(&(xo[WS(os, 5)]), VSUB(TZ, T10), ovs, &(xo[WS(os, 1)]));
Chris@10 280 ST(&(xo[WS(os, 10)]), VADD(T10, TZ), ovs, &(xo[0]));
Chris@10 281 {
Chris@10 282 V T1a, T18, T19, T1e, T1f, T1c, T1d, T1g, T1b;
Chris@10 283 T1a = VMUL(LDK(KP559016994), VSUB(T14, T17));
Chris@10 284 T18 = VADD(T14, T17);
Chris@10 285 T19 = VFNMS(LDK(KP250000000), T18, T11);
Chris@10 286 T1c = VSUB(T12, T13);
Chris@10 287 T1d = VSUB(T15, T16);
Chris@10 288 T1e = VBYI(VFNMS(LDK(KP951056516), T1d, VMUL(LDK(KP587785252), T1c)));
Chris@10 289 T1f = VBYI(VFMA(LDK(KP951056516), T1c, VMUL(LDK(KP587785252), T1d)));
Chris@10 290 ST(&(xo[0]), VADD(T11, T18), ovs, &(xo[0]));
Chris@10 291 T1g = VADD(T1a, T19);
Chris@10 292 ST(&(xo[WS(os, 6)]), VADD(T1f, T1g), ovs, &(xo[0]));
Chris@10 293 ST(&(xo[WS(os, 9)]), VSUB(T1g, T1f), ovs, &(xo[WS(os, 1)]));
Chris@10 294 T1b = VSUB(T19, T1a);
Chris@10 295 ST(&(xo[WS(os, 3)]), VSUB(T1b, T1e), ovs, &(xo[WS(os, 1)]));
Chris@10 296 ST(&(xo[WS(os, 12)]), VADD(T1e, T1b), ovs, &(xo[0]));
Chris@10 297 }
Chris@10 298 {
Chris@10 299 V TA, TN, TU, TS, Tl, TR, TK, TV, Tk, TE, TJ;
Chris@10 300 TA = VFMA(LDK(KP951056516), Ts, VMUL(LDK(KP587785252), Tz));
Chris@10 301 TN = VFMA(LDK(KP823639103), TL, VMUL(LDK(KP509036960), TM));
Chris@10 302 TU = VFNMS(LDK(KP823639103), TM, VMUL(LDK(KP509036960), TL));
Chris@10 303 TS = VFNMS(LDK(KP951056516), Tz, VMUL(LDK(KP587785252), Ts));
Chris@10 304 Tk = VFNMS(LDK(KP216506350), Tj, VMUL(LDK(KP866025403), Ti));
Chris@10 305 Tl = VADD(Tf, Tk);
Chris@10 306 TR = VSUB(Tf, Tk);
Chris@10 307 TE = VMUL(LDK(KP559016994), VSUB(TC, TD));
Chris@10 308 TJ = VFNMS(LDK(KP250000000), TI, TH);
Chris@10 309 TK = VADD(TE, TJ);
Chris@10 310 TV = VSUB(TJ, TE);
Chris@10 311 {
Chris@10 312 V TB, TO, TX, TY;
Chris@10 313 TB = VBYI(VADD(Tl, TA));
Chris@10 314 TO = VSUB(TK, TN);
Chris@10 315 ST(&(xo[WS(os, 1)]), VADD(TB, TO), ovs, &(xo[WS(os, 1)]));
Chris@10 316 ST(&(xo[WS(os, 14)]), VSUB(TO, TB), ovs, &(xo[0]));
Chris@10 317 TX = VBYI(VSUB(TS, TR));
Chris@10 318 TY = VSUB(TV, TU);
Chris@10 319 ST(&(xo[WS(os, 7)]), VADD(TX, TY), ovs, &(xo[WS(os, 1)]));
Chris@10 320 ST(&(xo[WS(os, 8)]), VSUB(TY, TX), ovs, &(xo[0]));
Chris@10 321 }
Chris@10 322 {
Chris@10 323 V TP, TQ, TT, TW;
Chris@10 324 TP = VBYI(VSUB(Tl, TA));
Chris@10 325 TQ = VADD(TN, TK);
Chris@10 326 ST(&(xo[WS(os, 4)]), VADD(TP, TQ), ovs, &(xo[0]));
Chris@10 327 ST(&(xo[WS(os, 11)]), VSUB(TQ, TP), ovs, &(xo[WS(os, 1)]));
Chris@10 328 TT = VBYI(VADD(TR, TS));
Chris@10 329 TW = VADD(TU, TV);
Chris@10 330 ST(&(xo[WS(os, 2)]), VADD(TT, TW), ovs, &(xo[0]));
Chris@10 331 ST(&(xo[WS(os, 13)]), VSUB(TW, TT), ovs, &(xo[WS(os, 1)]));
Chris@10 332 }
Chris@10 333 }
Chris@10 334 }
Chris@10 335 }
Chris@10 336 VLEAVE();
Chris@10 337 }
Chris@10 338
Chris@10 339 static const kdft_desc desc = { 15, XSIMD_STRING("n1bv_15"), {64, 11, 14, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 340
Chris@10 341 void XSIMD(codelet_n1bv_15) (planner *p) {
Chris@10 342 X(kdft_register) (p, n1bv_15, &desc);
Chris@10 343 }
Chris@10 344
Chris@10 345 #endif /* HAVE_FMA */