Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:37:02 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include n1b.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 48 FP additions, 20 FP multiplications,
|
Chris@10
|
32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
|
Chris@10
|
33 * 49 stack variables, 2 constants, and 24 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "n1b.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
41 {
|
Chris@10
|
42 INT i;
|
Chris@10
|
43 const R *xi;
|
Chris@10
|
44 R *xo;
|
Chris@10
|
45 xi = ii;
|
Chris@10
|
46 xo = io;
|
Chris@10
|
47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
|
Chris@10
|
48 V T1, T6, Tc, Th, Td, Te, Ti, Tz, T4, TA, T9, Tj, Tf, Tw;
|
Chris@10
|
49 {
|
Chris@10
|
50 V T2, T3, T7, T8;
|
Chris@10
|
51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
Chris@10
|
52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
Chris@10
|
53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
Chris@10
|
54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
Chris@10
|
55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
|
Chris@10
|
56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
Chris@10
|
57 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
58 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
59 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
60 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
61 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
62 Tz = VSUB(T2, T3);
|
Chris@10
|
63 T4 = VADD(T2, T3);
|
Chris@10
|
64 TA = VSUB(T7, T8);
|
Chris@10
|
65 T9 = VADD(T7, T8);
|
Chris@10
|
66 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
67 }
|
Chris@10
|
68 Tf = VADD(Td, Te);
|
Chris@10
|
69 Tw = VSUB(Td, Te);
|
Chris@10
|
70 {
|
Chris@10
|
71 V T5, Tp, TJ, TB, Ta, Tq, Tk, Tx, Tg, Ts;
|
Chris@10
|
72 T5 = VADD(T1, T4);
|
Chris@10
|
73 Tp = VFNMS(LDK(KP500000000), T4, T1);
|
Chris@10
|
74 TJ = VSUB(Tz, TA);
|
Chris@10
|
75 TB = VADD(Tz, TA);
|
Chris@10
|
76 Ta = VADD(T6, T9);
|
Chris@10
|
77 Tq = VFNMS(LDK(KP500000000), T9, T6);
|
Chris@10
|
78 Tk = VADD(Ti, Tj);
|
Chris@10
|
79 Tx = VSUB(Tj, Ti);
|
Chris@10
|
80 Tg = VADD(Tc, Tf);
|
Chris@10
|
81 Ts = VFNMS(LDK(KP500000000), Tf, Tc);
|
Chris@10
|
82 {
|
Chris@10
|
83 V Tr, TF, Tb, Tn, TG, Ty, Tl, Tt;
|
Chris@10
|
84 Tr = VADD(Tp, Tq);
|
Chris@10
|
85 TF = VSUB(Tp, Tq);
|
Chris@10
|
86 Tb = VSUB(T5, Ta);
|
Chris@10
|
87 Tn = VADD(T5, Ta);
|
Chris@10
|
88 TG = VADD(Tw, Tx);
|
Chris@10
|
89 Ty = VSUB(Tw, Tx);
|
Chris@10
|
90 Tl = VADD(Th, Tk);
|
Chris@10
|
91 Tt = VFNMS(LDK(KP500000000), Tk, Th);
|
Chris@10
|
92 {
|
Chris@10
|
93 V TC, TE, TH, TL, Tu, TI, Tm, To;
|
Chris@10
|
94 TC = VMUL(LDK(KP866025403), VSUB(Ty, TB));
|
Chris@10
|
95 TE = VMUL(LDK(KP866025403), VADD(TB, Ty));
|
Chris@10
|
96 TH = VFNMS(LDK(KP866025403), TG, TF);
|
Chris@10
|
97 TL = VFMA(LDK(KP866025403), TG, TF);
|
Chris@10
|
98 Tu = VADD(Ts, Tt);
|
Chris@10
|
99 TI = VSUB(Ts, Tt);
|
Chris@10
|
100 Tm = VSUB(Tg, Tl);
|
Chris@10
|
101 To = VADD(Tg, Tl);
|
Chris@10
|
102 {
|
Chris@10
|
103 V TK, TM, Tv, TD;
|
Chris@10
|
104 TK = VFMA(LDK(KP866025403), TJ, TI);
|
Chris@10
|
105 TM = VFNMS(LDK(KP866025403), TJ, TI);
|
Chris@10
|
106 Tv = VSUB(Tr, Tu);
|
Chris@10
|
107 TD = VADD(Tr, Tu);
|
Chris@10
|
108 ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
|
Chris@10
|
109 ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
|
Chris@10
|
110 ST(&(xo[WS(os, 9)]), VFMAI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
111 ST(&(xo[WS(os, 3)]), VFNMSI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
112 ST(&(xo[WS(os, 5)]), VFMAI(TM, TL), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
113 ST(&(xo[WS(os, 7)]), VFNMSI(TM, TL), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
114 ST(&(xo[WS(os, 11)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
115 ST(&(xo[WS(os, 1)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
116 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
|
Chris@10
|
117 ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
|
Chris@10
|
118 ST(&(xo[WS(os, 2)]), VFMAI(TC, Tv), ovs, &(xo[0]));
|
Chris@10
|
119 ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tv), ovs, &(xo[0]));
|
Chris@10
|
120 }
|
Chris@10
|
121 }
|
Chris@10
|
122 }
|
Chris@10
|
123 }
|
Chris@10
|
124 }
|
Chris@10
|
125 }
|
Chris@10
|
126 VLEAVE();
|
Chris@10
|
127 }
|
Chris@10
|
128
|
Chris@10
|
129 static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 };
|
Chris@10
|
130
|
Chris@10
|
131 void XSIMD(codelet_n1bv_12) (planner *p) {
|
Chris@10
|
132 X(kdft_register) (p, n1bv_12, &desc);
|
Chris@10
|
133 }
|
Chris@10
|
134
|
Chris@10
|
135 #else /* HAVE_FMA */
|
Chris@10
|
136
|
Chris@10
|
137 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include n1b.h */
|
Chris@10
|
138
|
Chris@10
|
139 /*
|
Chris@10
|
140 * This function contains 48 FP additions, 8 FP multiplications,
|
Chris@10
|
141 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
|
Chris@10
|
142 * 27 stack variables, 2 constants, and 24 memory accesses
|
Chris@10
|
143 */
|
Chris@10
|
144 #include "n1b.h"
|
Chris@10
|
145
|
Chris@10
|
146 static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
Chris@10
|
147 {
|
Chris@10
|
148 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
149 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
150 {
|
Chris@10
|
151 INT i;
|
Chris@10
|
152 const R *xi;
|
Chris@10
|
153 R *xo;
|
Chris@10
|
154 xi = ii;
|
Chris@10
|
155 xo = io;
|
Chris@10
|
156 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
|
Chris@10
|
157 V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts;
|
Chris@10
|
158 {
|
Chris@10
|
159 V T1, T6, T4, Tk, T9, Tl;
|
Chris@10
|
160 T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
Chris@10
|
161 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
Chris@10
|
162 {
|
Chris@10
|
163 V T2, T3, T7, T8;
|
Chris@10
|
164 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
Chris@10
|
165 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
Chris@10
|
166 T4 = VADD(T2, T3);
|
Chris@10
|
167 Tk = VSUB(T2, T3);
|
Chris@10
|
168 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
|
Chris@10
|
169 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
Chris@10
|
170 T9 = VADD(T7, T8);
|
Chris@10
|
171 Tl = VSUB(T7, T8);
|
Chris@10
|
172 }
|
Chris@10
|
173 T5 = VFNMS(LDK(KP500000000), T4, T1);
|
Chris@10
|
174 Ta = VFNMS(LDK(KP500000000), T9, T6);
|
Chris@10
|
175 TG = VADD(T6, T9);
|
Chris@10
|
176 TF = VADD(T1, T4);
|
Chris@10
|
177 Ty = VADD(Tk, Tl);
|
Chris@10
|
178 Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl));
|
Chris@10
|
179 }
|
Chris@10
|
180 {
|
Chris@10
|
181 V Tn, Tq, Te, To, Th, Tr;
|
Chris@10
|
182 Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
183 Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
184 {
|
Chris@10
|
185 V Tc, Td, Tf, Tg;
|
Chris@10
|
186 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
187 Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
188 Te = VSUB(Tc, Td);
|
Chris@10
|
189 To = VADD(Tc, Td);
|
Chris@10
|
190 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
191 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
Chris@10
|
192 Th = VSUB(Tf, Tg);
|
Chris@10
|
193 Tr = VADD(Tf, Tg);
|
Chris@10
|
194 }
|
Chris@10
|
195 Ti = VMUL(LDK(KP866025403), VSUB(Te, Th));
|
Chris@10
|
196 Tp = VFNMS(LDK(KP500000000), To, Tn);
|
Chris@10
|
197 TJ = VADD(Tq, Tr);
|
Chris@10
|
198 TI = VADD(Tn, To);
|
Chris@10
|
199 Tx = VADD(Te, Th);
|
Chris@10
|
200 Ts = VFNMS(LDK(KP500000000), Tr, Tq);
|
Chris@10
|
201 }
|
Chris@10
|
202 {
|
Chris@10
|
203 V TH, TK, TL, TM;
|
Chris@10
|
204 TH = VSUB(TF, TG);
|
Chris@10
|
205 TK = VBYI(VSUB(TI, TJ));
|
Chris@10
|
206 ST(&(xo[WS(os, 3)]), VSUB(TH, TK), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
207 ST(&(xo[WS(os, 9)]), VADD(TH, TK), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
208 TL = VADD(TF, TG);
|
Chris@10
|
209 TM = VADD(TI, TJ);
|
Chris@10
|
210 ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
|
Chris@10
|
211 ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
|
Chris@10
|
212 }
|
Chris@10
|
213 {
|
Chris@10
|
214 V Tj, Tv, Tu, Tw, Tb, Tt;
|
Chris@10
|
215 Tb = VSUB(T5, Ta);
|
Chris@10
|
216 Tj = VSUB(Tb, Ti);
|
Chris@10
|
217 Tv = VADD(Tb, Ti);
|
Chris@10
|
218 Tt = VSUB(Tp, Ts);
|
Chris@10
|
219 Tu = VBYI(VADD(Tm, Tt));
|
Chris@10
|
220 Tw = VBYI(VSUB(Tt, Tm));
|
Chris@10
|
221 ST(&(xo[WS(os, 11)]), VSUB(Tj, Tu), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
222 ST(&(xo[WS(os, 5)]), VADD(Tv, Tw), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
223 ST(&(xo[WS(os, 1)]), VADD(Tj, Tu), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
224 ST(&(xo[WS(os, 7)]), VSUB(Tv, Tw), ovs, &(xo[WS(os, 1)]));
|
Chris@10
|
225 }
|
Chris@10
|
226 {
|
Chris@10
|
227 V Tz, TD, TC, TE, TA, TB;
|
Chris@10
|
228 Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty)));
|
Chris@10
|
229 TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx)));
|
Chris@10
|
230 TA = VADD(T5, Ta);
|
Chris@10
|
231 TB = VADD(Tp, Ts);
|
Chris@10
|
232 TC = VSUB(TA, TB);
|
Chris@10
|
233 TE = VADD(TA, TB);
|
Chris@10
|
234 ST(&(xo[WS(os, 2)]), VADD(Tz, TC), ovs, &(xo[0]));
|
Chris@10
|
235 ST(&(xo[WS(os, 8)]), VSUB(TE, TD), ovs, &(xo[0]));
|
Chris@10
|
236 ST(&(xo[WS(os, 10)]), VSUB(TC, Tz), ovs, &(xo[0]));
|
Chris@10
|
237 ST(&(xo[WS(os, 4)]), VADD(TD, TE), ovs, &(xo[0]));
|
Chris@10
|
238 }
|
Chris@10
|
239 }
|
Chris@10
|
240 }
|
Chris@10
|
241 VLEAVE();
|
Chris@10
|
242 }
|
Chris@10
|
243
|
Chris@10
|
244 static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 };
|
Chris@10
|
245
|
Chris@10
|
246 void XSIMD(codelet_n1bv_12) (planner *p) {
|
Chris@10
|
247 X(kdft_register) (p, n1bv_12, &desc);
|
Chris@10
|
248 }
|
Chris@10
|
249
|
Chris@10
|
250 #endif /* HAVE_FMA */
|