annotate src/fftw-3.3.3/dft/simd/common/n1bv_12.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:37:02 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include n1b.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 48 FP additions, 20 FP multiplications,
Chris@10 32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
Chris@10 33 * 49 stack variables, 2 constants, and 24 memory accesses
Chris@10 34 */
Chris@10 35 #include "n1b.h"
Chris@10 36
Chris@10 37 static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 38 {
Chris@10 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 41 {
Chris@10 42 INT i;
Chris@10 43 const R *xi;
Chris@10 44 R *xo;
Chris@10 45 xi = ii;
Chris@10 46 xo = io;
Chris@10 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
Chris@10 48 V T1, T6, Tc, Th, Td, Te, Ti, Tz, T4, TA, T9, Tj, Tf, Tw;
Chris@10 49 {
Chris@10 50 V T2, T3, T7, T8;
Chris@10 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@10 56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 57 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 58 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@10 59 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 60 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@10 61 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 62 Tz = VSUB(T2, T3);
Chris@10 63 T4 = VADD(T2, T3);
Chris@10 64 TA = VSUB(T7, T8);
Chris@10 65 T9 = VADD(T7, T8);
Chris@10 66 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 67 }
Chris@10 68 Tf = VADD(Td, Te);
Chris@10 69 Tw = VSUB(Td, Te);
Chris@10 70 {
Chris@10 71 V T5, Tp, TJ, TB, Ta, Tq, Tk, Tx, Tg, Ts;
Chris@10 72 T5 = VADD(T1, T4);
Chris@10 73 Tp = VFNMS(LDK(KP500000000), T4, T1);
Chris@10 74 TJ = VSUB(Tz, TA);
Chris@10 75 TB = VADD(Tz, TA);
Chris@10 76 Ta = VADD(T6, T9);
Chris@10 77 Tq = VFNMS(LDK(KP500000000), T9, T6);
Chris@10 78 Tk = VADD(Ti, Tj);
Chris@10 79 Tx = VSUB(Tj, Ti);
Chris@10 80 Tg = VADD(Tc, Tf);
Chris@10 81 Ts = VFNMS(LDK(KP500000000), Tf, Tc);
Chris@10 82 {
Chris@10 83 V Tr, TF, Tb, Tn, TG, Ty, Tl, Tt;
Chris@10 84 Tr = VADD(Tp, Tq);
Chris@10 85 TF = VSUB(Tp, Tq);
Chris@10 86 Tb = VSUB(T5, Ta);
Chris@10 87 Tn = VADD(T5, Ta);
Chris@10 88 TG = VADD(Tw, Tx);
Chris@10 89 Ty = VSUB(Tw, Tx);
Chris@10 90 Tl = VADD(Th, Tk);
Chris@10 91 Tt = VFNMS(LDK(KP500000000), Tk, Th);
Chris@10 92 {
Chris@10 93 V TC, TE, TH, TL, Tu, TI, Tm, To;
Chris@10 94 TC = VMUL(LDK(KP866025403), VSUB(Ty, TB));
Chris@10 95 TE = VMUL(LDK(KP866025403), VADD(TB, Ty));
Chris@10 96 TH = VFNMS(LDK(KP866025403), TG, TF);
Chris@10 97 TL = VFMA(LDK(KP866025403), TG, TF);
Chris@10 98 Tu = VADD(Ts, Tt);
Chris@10 99 TI = VSUB(Ts, Tt);
Chris@10 100 Tm = VSUB(Tg, Tl);
Chris@10 101 To = VADD(Tg, Tl);
Chris@10 102 {
Chris@10 103 V TK, TM, Tv, TD;
Chris@10 104 TK = VFMA(LDK(KP866025403), TJ, TI);
Chris@10 105 TM = VFNMS(LDK(KP866025403), TJ, TI);
Chris@10 106 Tv = VSUB(Tr, Tu);
Chris@10 107 TD = VADD(Tr, Tu);
Chris@10 108 ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
Chris@10 109 ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
Chris@10 110 ST(&(xo[WS(os, 9)]), VFMAI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
Chris@10 111 ST(&(xo[WS(os, 3)]), VFNMSI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
Chris@10 112 ST(&(xo[WS(os, 5)]), VFMAI(TM, TL), ovs, &(xo[WS(os, 1)]));
Chris@10 113 ST(&(xo[WS(os, 7)]), VFNMSI(TM, TL), ovs, &(xo[WS(os, 1)]));
Chris@10 114 ST(&(xo[WS(os, 11)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
Chris@10 115 ST(&(xo[WS(os, 1)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
Chris@10 116 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
Chris@10 117 ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
Chris@10 118 ST(&(xo[WS(os, 2)]), VFMAI(TC, Tv), ovs, &(xo[0]));
Chris@10 119 ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tv), ovs, &(xo[0]));
Chris@10 120 }
Chris@10 121 }
Chris@10 122 }
Chris@10 123 }
Chris@10 124 }
Chris@10 125 }
Chris@10 126 VLEAVE();
Chris@10 127 }
Chris@10 128
Chris@10 129 static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 130
Chris@10 131 void XSIMD(codelet_n1bv_12) (planner *p) {
Chris@10 132 X(kdft_register) (p, n1bv_12, &desc);
Chris@10 133 }
Chris@10 134
Chris@10 135 #else /* HAVE_FMA */
Chris@10 136
Chris@10 137 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include n1b.h */
Chris@10 138
Chris@10 139 /*
Chris@10 140 * This function contains 48 FP additions, 8 FP multiplications,
Chris@10 141 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
Chris@10 142 * 27 stack variables, 2 constants, and 24 memory accesses
Chris@10 143 */
Chris@10 144 #include "n1b.h"
Chris@10 145
Chris@10 146 static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@10 147 {
Chris@10 148 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 149 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 150 {
Chris@10 151 INT i;
Chris@10 152 const R *xi;
Chris@10 153 R *xo;
Chris@10 154 xi = ii;
Chris@10 155 xo = io;
Chris@10 156 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
Chris@10 157 V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts;
Chris@10 158 {
Chris@10 159 V T1, T6, T4, Tk, T9, Tl;
Chris@10 160 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@10 161 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
Chris@10 162 {
Chris@10 163 V T2, T3, T7, T8;
Chris@10 164 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@10 165 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Chris@10 166 T4 = VADD(T2, T3);
Chris@10 167 Tk = VSUB(T2, T3);
Chris@10 168 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
Chris@10 169 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@10 170 T9 = VADD(T7, T8);
Chris@10 171 Tl = VSUB(T7, T8);
Chris@10 172 }
Chris@10 173 T5 = VFNMS(LDK(KP500000000), T4, T1);
Chris@10 174 Ta = VFNMS(LDK(KP500000000), T9, T6);
Chris@10 175 TG = VADD(T6, T9);
Chris@10 176 TF = VADD(T1, T4);
Chris@10 177 Ty = VADD(Tk, Tl);
Chris@10 178 Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl));
Chris@10 179 }
Chris@10 180 {
Chris@10 181 V Tn, Tq, Te, To, Th, Tr;
Chris@10 182 Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@10 183 Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
Chris@10 184 {
Chris@10 185 V Tc, Td, Tf, Tg;
Chris@10 186 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Chris@10 187 Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Chris@10 188 Te = VSUB(Tc, Td);
Chris@10 189 To = VADD(Tc, Td);
Chris@10 190 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@10 191 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@10 192 Th = VSUB(Tf, Tg);
Chris@10 193 Tr = VADD(Tf, Tg);
Chris@10 194 }
Chris@10 195 Ti = VMUL(LDK(KP866025403), VSUB(Te, Th));
Chris@10 196 Tp = VFNMS(LDK(KP500000000), To, Tn);
Chris@10 197 TJ = VADD(Tq, Tr);
Chris@10 198 TI = VADD(Tn, To);
Chris@10 199 Tx = VADD(Te, Th);
Chris@10 200 Ts = VFNMS(LDK(KP500000000), Tr, Tq);
Chris@10 201 }
Chris@10 202 {
Chris@10 203 V TH, TK, TL, TM;
Chris@10 204 TH = VSUB(TF, TG);
Chris@10 205 TK = VBYI(VSUB(TI, TJ));
Chris@10 206 ST(&(xo[WS(os, 3)]), VSUB(TH, TK), ovs, &(xo[WS(os, 1)]));
Chris@10 207 ST(&(xo[WS(os, 9)]), VADD(TH, TK), ovs, &(xo[WS(os, 1)]));
Chris@10 208 TL = VADD(TF, TG);
Chris@10 209 TM = VADD(TI, TJ);
Chris@10 210 ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
Chris@10 211 ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
Chris@10 212 }
Chris@10 213 {
Chris@10 214 V Tj, Tv, Tu, Tw, Tb, Tt;
Chris@10 215 Tb = VSUB(T5, Ta);
Chris@10 216 Tj = VSUB(Tb, Ti);
Chris@10 217 Tv = VADD(Tb, Ti);
Chris@10 218 Tt = VSUB(Tp, Ts);
Chris@10 219 Tu = VBYI(VADD(Tm, Tt));
Chris@10 220 Tw = VBYI(VSUB(Tt, Tm));
Chris@10 221 ST(&(xo[WS(os, 11)]), VSUB(Tj, Tu), ovs, &(xo[WS(os, 1)]));
Chris@10 222 ST(&(xo[WS(os, 5)]), VADD(Tv, Tw), ovs, &(xo[WS(os, 1)]));
Chris@10 223 ST(&(xo[WS(os, 1)]), VADD(Tj, Tu), ovs, &(xo[WS(os, 1)]));
Chris@10 224 ST(&(xo[WS(os, 7)]), VSUB(Tv, Tw), ovs, &(xo[WS(os, 1)]));
Chris@10 225 }
Chris@10 226 {
Chris@10 227 V Tz, TD, TC, TE, TA, TB;
Chris@10 228 Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty)));
Chris@10 229 TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx)));
Chris@10 230 TA = VADD(T5, Ta);
Chris@10 231 TB = VADD(Tp, Ts);
Chris@10 232 TC = VSUB(TA, TB);
Chris@10 233 TE = VADD(TA, TB);
Chris@10 234 ST(&(xo[WS(os, 2)]), VADD(Tz, TC), ovs, &(xo[0]));
Chris@10 235 ST(&(xo[WS(os, 8)]), VSUB(TE, TD), ovs, &(xo[0]));
Chris@10 236 ST(&(xo[WS(os, 10)]), VSUB(TC, Tz), ovs, &(xo[0]));
Chris@10 237 ST(&(xo[WS(os, 4)]), VADD(TD, TE), ovs, &(xo[0]));
Chris@10 238 }
Chris@10 239 }
Chris@10 240 }
Chris@10 241 VLEAVE();
Chris@10 242 }
Chris@10 243
Chris@10 244 static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 };
Chris@10 245
Chris@10 246 void XSIMD(codelet_n1bv_12) (planner *p) {
Chris@10 247 X(kdft_register) (p, n1bv_12, &desc);
Chris@10 248 }
Chris@10 249
Chris@10 250 #endif /* HAVE_FMA */