annotate src/fftw-3.3.3/dft/scalar/codelets/t1_9.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:35:49 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 9 -name t1_9 -include t.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 96 FP additions, 88 FP multiplications,
Chris@10 32 * (or, 24 additions, 16 multiplications, 72 fused multiply/add),
Chris@10 33 * 72 stack variables, 10 constants, and 36 memory accesses
Chris@10 34 */
Chris@10 35 #include "t.h"
Chris@10 36
Chris@10 37 static void t1_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP954188894, +0.954188894138671133499268364187245676532219158);
Chris@10 40 DK(KP852868531, +0.852868531952443209628250963940074071936020296);
Chris@10 41 DK(KP363970234, +0.363970234266202361351047882776834043890471784);
Chris@10 42 DK(KP492403876, +0.492403876506104029683371512294761506835321626);
Chris@10 43 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
Chris@10 44 DK(KP777861913, +0.777861913430206160028177977318626690410586096);
Chris@10 45 DK(KP839099631, +0.839099631177280011763127298123181364687434283);
Chris@10 46 DK(KP176326980, +0.176326980708464973471090386868618986121633062);
Chris@10 47 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 48 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 49 {
Chris@10 50 INT m;
Chris@10 51 for (m = mb, W = W + (mb * 16); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
Chris@10 52 E T1K, T24, T1H, T23;
Chris@10 53 {
Chris@10 54 E T1, T1R, T1Q, T10, T1W, Te, TB, T1l, T1r, T1q, T1M, TE, T1g, Tz, T12;
Chris@10 55 E TC, TH, TK, T17, TR, TG, TJ, TD;
Chris@10 56 T1 = ri[0];
Chris@10 57 T1R = ii[0];
Chris@10 58 {
Chris@10 59 E T9, Tc, TY, Ta, Tb, TX, T7;
Chris@10 60 {
Chris@10 61 E T3, T6, T8, TW, T4, T2, T5;
Chris@10 62 T3 = ri[WS(rs, 3)];
Chris@10 63 T6 = ii[WS(rs, 3)];
Chris@10 64 T2 = W[4];
Chris@10 65 T9 = ri[WS(rs, 6)];
Chris@10 66 Tc = ii[WS(rs, 6)];
Chris@10 67 T8 = W[10];
Chris@10 68 TW = T2 * T6;
Chris@10 69 T4 = T2 * T3;
Chris@10 70 T5 = W[5];
Chris@10 71 TY = T8 * Tc;
Chris@10 72 Ta = T8 * T9;
Chris@10 73 Tb = W[11];
Chris@10 74 TX = FNMS(T5, T3, TW);
Chris@10 75 T7 = FMA(T5, T6, T4);
Chris@10 76 }
Chris@10 77 {
Chris@10 78 E Th, Tk, Ti, T1n, Tn, Tq, Tp, T1i, Tx, T1j, To, Tj, TZ, Td, Tg;
Chris@10 79 E TA, Tl, Ty;
Chris@10 80 Th = ri[WS(rs, 1)];
Chris@10 81 TZ = FNMS(Tb, T9, TY);
Chris@10 82 Td = FMA(Tb, Tc, Ta);
Chris@10 83 Tk = ii[WS(rs, 1)];
Chris@10 84 Tg = W[0];
Chris@10 85 T1Q = TX + TZ;
Chris@10 86 T10 = TX - TZ;
Chris@10 87 T1W = Td - T7;
Chris@10 88 Te = T7 + Td;
Chris@10 89 Ti = Tg * Th;
Chris@10 90 T1n = Tg * Tk;
Chris@10 91 {
Chris@10 92 E Tt, Tw, Ts, Tv, T1h, Tu, Tm;
Chris@10 93 Tt = ri[WS(rs, 7)];
Chris@10 94 Tw = ii[WS(rs, 7)];
Chris@10 95 Ts = W[12];
Chris@10 96 Tv = W[13];
Chris@10 97 Tn = ri[WS(rs, 4)];
Chris@10 98 Tq = ii[WS(rs, 4)];
Chris@10 99 T1h = Ts * Tw;
Chris@10 100 Tu = Ts * Tt;
Chris@10 101 Tm = W[6];
Chris@10 102 Tp = W[7];
Chris@10 103 T1i = FNMS(Tv, Tt, T1h);
Chris@10 104 Tx = FMA(Tv, Tw, Tu);
Chris@10 105 T1j = Tm * Tq;
Chris@10 106 To = Tm * Tn;
Chris@10 107 }
Chris@10 108 Tj = W[1];
Chris@10 109 TB = ri[WS(rs, 2)];
Chris@10 110 {
Chris@10 111 E T1k, Tr, T1o, T1p;
Chris@10 112 T1k = FNMS(Tp, Tn, T1j);
Chris@10 113 Tr = FMA(Tp, Tq, To);
Chris@10 114 T1o = FNMS(Tj, Th, T1n);
Chris@10 115 Tl = FMA(Tj, Tk, Ti);
Chris@10 116 T1p = T1k + T1i;
Chris@10 117 T1l = T1i - T1k;
Chris@10 118 Ty = Tr + Tx;
Chris@10 119 T1r = Tr - Tx;
Chris@10 120 T1q = FNMS(KP500000000, T1p, T1o);
Chris@10 121 T1M = T1o + T1p;
Chris@10 122 TE = ii[WS(rs, 2)];
Chris@10 123 }
Chris@10 124 T1g = FNMS(KP500000000, Ty, Tl);
Chris@10 125 Tz = Tl + Ty;
Chris@10 126 TA = W[2];
Chris@10 127 {
Chris@10 128 E TN, TQ, TP, T16, TO, TM;
Chris@10 129 TN = ri[WS(rs, 8)];
Chris@10 130 TQ = ii[WS(rs, 8)];
Chris@10 131 TM = W[14];
Chris@10 132 T12 = TA * TE;
Chris@10 133 TC = TA * TB;
Chris@10 134 TP = W[15];
Chris@10 135 T16 = TM * TQ;
Chris@10 136 TO = TM * TN;
Chris@10 137 TH = ri[WS(rs, 5)];
Chris@10 138 TK = ii[WS(rs, 5)];
Chris@10 139 T17 = FNMS(TP, TN, T16);
Chris@10 140 TR = FMA(TP, TQ, TO);
Chris@10 141 TG = W[8];
Chris@10 142 TJ = W[9];
Chris@10 143 }
Chris@10 144 TD = W[3];
Chris@10 145 }
Chris@10 146 }
Chris@10 147 {
Chris@10 148 E TV, Tf, T1S, T1V, T1d, T1a, T19, T1N, TT, T1c;
Chris@10 149 {
Chris@10 150 E T13, TF, T15, TL, T14, TI, TS, T18;
Chris@10 151 TV = FNMS(KP500000000, Te, T1);
Chris@10 152 Tf = T1 + Te;
Chris@10 153 T14 = TG * TK;
Chris@10 154 TI = TG * TH;
Chris@10 155 T13 = FNMS(TD, TB, T12);
Chris@10 156 TF = FMA(TD, TE, TC);
Chris@10 157 T15 = FNMS(TJ, TH, T14);
Chris@10 158 TL = FMA(TJ, TK, TI);
Chris@10 159 T1S = T1Q + T1R;
Chris@10 160 T1V = FNMS(KP500000000, T1Q, T1R);
Chris@10 161 T18 = T15 + T17;
Chris@10 162 T1d = T15 - T17;
Chris@10 163 TS = TL + TR;
Chris@10 164 T1a = TR - TL;
Chris@10 165 T19 = FNMS(KP500000000, T18, T13);
Chris@10 166 T1N = T13 + T18;
Chris@10 167 TT = TF + TS;
Chris@10 168 T1c = FNMS(KP500000000, TS, TF);
Chris@10 169 }
Chris@10 170 {
Chris@10 171 E T11, T1z, T1E, T1D, T21, T1X, T1I, T1C, T1Y, T1y, T20, T1u, T1U, TU;
Chris@10 172 T1U = TT - Tz;
Chris@10 173 TU = Tz + TT;
Chris@10 174 {
Chris@10 175 E T1P, T1O, T1L, T1T;
Chris@10 176 T1P = T1M + T1N;
Chris@10 177 T1O = T1M - T1N;
Chris@10 178 T11 = FMA(KP866025403, T10, TV);
Chris@10 179 T1z = FNMS(KP866025403, T10, TV);
Chris@10 180 T1L = FNMS(KP500000000, TU, Tf);
Chris@10 181 ri[0] = Tf + TU;
Chris@10 182 T1T = FNMS(KP500000000, T1P, T1S);
Chris@10 183 ii[0] = T1P + T1S;
Chris@10 184 ri[WS(rs, 3)] = FMA(KP866025403, T1O, T1L);
Chris@10 185 ri[WS(rs, 6)] = FNMS(KP866025403, T1O, T1L);
Chris@10 186 ii[WS(rs, 6)] = FNMS(KP866025403, T1U, T1T);
Chris@10 187 ii[WS(rs, 3)] = FMA(KP866025403, T1U, T1T);
Chris@10 188 }
Chris@10 189 {
Chris@10 190 E T1B, T1m, T1w, T1f, T1s, T1A, T1b, T1e, T1x, T1t;
Chris@10 191 T1E = FNMS(KP866025403, T1a, T19);
Chris@10 192 T1b = FMA(KP866025403, T1a, T19);
Chris@10 193 T1e = FMA(KP866025403, T1d, T1c);
Chris@10 194 T1D = FNMS(KP866025403, T1d, T1c);
Chris@10 195 T1B = FMA(KP866025403, T1l, T1g);
Chris@10 196 T1m = FNMS(KP866025403, T1l, T1g);
Chris@10 197 T21 = FNMS(KP866025403, T1W, T1V);
Chris@10 198 T1X = FMA(KP866025403, T1W, T1V);
Chris@10 199 T1w = FNMS(KP176326980, T1b, T1e);
Chris@10 200 T1f = FMA(KP176326980, T1e, T1b);
Chris@10 201 T1s = FNMS(KP866025403, T1r, T1q);
Chris@10 202 T1A = FMA(KP866025403, T1r, T1q);
Chris@10 203 T1x = FNMS(KP839099631, T1m, T1s);
Chris@10 204 T1t = FMA(KP839099631, T1s, T1m);
Chris@10 205 T1I = FNMS(KP176326980, T1A, T1B);
Chris@10 206 T1C = FMA(KP176326980, T1B, T1A);
Chris@10 207 T1Y = FNMS(KP777861913, T1x, T1w);
Chris@10 208 T1y = FMA(KP777861913, T1x, T1w);
Chris@10 209 T20 = FNMS(KP777861913, T1t, T1f);
Chris@10 210 T1u = FMA(KP777861913, T1t, T1f);
Chris@10 211 }
Chris@10 212 {
Chris@10 213 E T22, T1G, T1Z, T1F, T1J, T1v;
Chris@10 214 ii[WS(rs, 1)] = FNMS(KP984807753, T1Y, T1X);
Chris@10 215 T1v = FNMS(KP492403876, T1u, T11);
Chris@10 216 ri[WS(rs, 1)] = FMA(KP984807753, T1u, T11);
Chris@10 217 T1F = FNMS(KP363970234, T1E, T1D);
Chris@10 218 T1J = FMA(KP363970234, T1D, T1E);
Chris@10 219 ri[WS(rs, 4)] = FMA(KP852868531, T1y, T1v);
Chris@10 220 ri[WS(rs, 7)] = FNMS(KP852868531, T1y, T1v);
Chris@10 221 T1K = FNMS(KP954188894, T1J, T1I);
Chris@10 222 T22 = FMA(KP954188894, T1J, T1I);
Chris@10 223 T1G = FNMS(KP954188894, T1F, T1C);
Chris@10 224 T24 = FMA(KP954188894, T1F, T1C);
Chris@10 225 T1Z = FMA(KP492403876, T1Y, T1X);
Chris@10 226 ii[WS(rs, 2)] = FNMS(KP984807753, T22, T21);
Chris@10 227 ri[WS(rs, 2)] = FMA(KP984807753, T1G, T1z);
Chris@10 228 T1H = FNMS(KP492403876, T1G, T1z);
Chris@10 229 ii[WS(rs, 7)] = FNMS(KP852868531, T20, T1Z);
Chris@10 230 ii[WS(rs, 4)] = FMA(KP852868531, T20, T1Z);
Chris@10 231 T23 = FMA(KP492403876, T22, T21);
Chris@10 232 }
Chris@10 233 }
Chris@10 234 }
Chris@10 235 }
Chris@10 236 ri[WS(rs, 8)] = FMA(KP852868531, T1K, T1H);
Chris@10 237 ri[WS(rs, 5)] = FNMS(KP852868531, T1K, T1H);
Chris@10 238 ii[WS(rs, 8)] = FMA(KP852868531, T24, T23);
Chris@10 239 ii[WS(rs, 5)] = FNMS(KP852868531, T24, T23);
Chris@10 240 }
Chris@10 241 }
Chris@10 242 }
Chris@10 243
Chris@10 244 static const tw_instr twinstr[] = {
Chris@10 245 {TW_FULL, 0, 9},
Chris@10 246 {TW_NEXT, 1, 0}
Chris@10 247 };
Chris@10 248
Chris@10 249 static const ct_desc desc = { 9, "t1_9", twinstr, &GENUS, {24, 16, 72, 0}, 0, 0, 0 };
Chris@10 250
Chris@10 251 void X(codelet_t1_9) (planner *p) {
Chris@10 252 X(kdft_dit_register) (p, t1_9, &desc);
Chris@10 253 }
Chris@10 254 #else /* HAVE_FMA */
Chris@10 255
Chris@10 256 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 9 -name t1_9 -include t.h */
Chris@10 257
Chris@10 258 /*
Chris@10 259 * This function contains 96 FP additions, 72 FP multiplications,
Chris@10 260 * (or, 60 additions, 36 multiplications, 36 fused multiply/add),
Chris@10 261 * 41 stack variables, 8 constants, and 36 memory accesses
Chris@10 262 */
Chris@10 263 #include "t.h"
Chris@10 264
Chris@10 265 static void t1_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 266 {
Chris@10 267 DK(KP939692620, +0.939692620785908384054109277324731469936208134);
Chris@10 268 DK(KP342020143, +0.342020143325668733044099614682259580763083368);
Chris@10 269 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
Chris@10 270 DK(KP173648177, +0.173648177666930348851716626769314796000375677);
Chris@10 271 DK(KP642787609, +0.642787609686539326322643409907263432907559884);
Chris@10 272 DK(KP766044443, +0.766044443118978035202392650555416673935832457);
Chris@10 273 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 274 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 275 {
Chris@10 276 INT m;
Chris@10 277 for (m = mb, W = W + (mb * 16); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
Chris@10 278 E T1, T1B, TQ, T1G, Tc, TN, T1A, T1H, TL, T1x, T17, T1o, T1c, T1n, Tu;
Chris@10 279 E T1w, TW, T1k, T11, T1l;
Chris@10 280 {
Chris@10 281 E T6, TO, Tb, TP;
Chris@10 282 T1 = ri[0];
Chris@10 283 T1B = ii[0];
Chris@10 284 {
Chris@10 285 E T3, T5, T2, T4;
Chris@10 286 T3 = ri[WS(rs, 3)];
Chris@10 287 T5 = ii[WS(rs, 3)];
Chris@10 288 T2 = W[4];
Chris@10 289 T4 = W[5];
Chris@10 290 T6 = FMA(T2, T3, T4 * T5);
Chris@10 291 TO = FNMS(T4, T3, T2 * T5);
Chris@10 292 }
Chris@10 293 {
Chris@10 294 E T8, Ta, T7, T9;
Chris@10 295 T8 = ri[WS(rs, 6)];
Chris@10 296 Ta = ii[WS(rs, 6)];
Chris@10 297 T7 = W[10];
Chris@10 298 T9 = W[11];
Chris@10 299 Tb = FMA(T7, T8, T9 * Ta);
Chris@10 300 TP = FNMS(T9, T8, T7 * Ta);
Chris@10 301 }
Chris@10 302 TQ = KP866025403 * (TO - TP);
Chris@10 303 T1G = KP866025403 * (Tb - T6);
Chris@10 304 Tc = T6 + Tb;
Chris@10 305 TN = FNMS(KP500000000, Tc, T1);
Chris@10 306 T1A = TO + TP;
Chris@10 307 T1H = FNMS(KP500000000, T1A, T1B);
Chris@10 308 }
Chris@10 309 {
Chris@10 310 E Tz, T19, TE, T14, TJ, T15, TK, T1a;
Chris@10 311 {
Chris@10 312 E Tw, Ty, Tv, Tx;
Chris@10 313 Tw = ri[WS(rs, 2)];
Chris@10 314 Ty = ii[WS(rs, 2)];
Chris@10 315 Tv = W[2];
Chris@10 316 Tx = W[3];
Chris@10 317 Tz = FMA(Tv, Tw, Tx * Ty);
Chris@10 318 T19 = FNMS(Tx, Tw, Tv * Ty);
Chris@10 319 }
Chris@10 320 {
Chris@10 321 E TB, TD, TA, TC;
Chris@10 322 TB = ri[WS(rs, 5)];
Chris@10 323 TD = ii[WS(rs, 5)];
Chris@10 324 TA = W[8];
Chris@10 325 TC = W[9];
Chris@10 326 TE = FMA(TA, TB, TC * TD);
Chris@10 327 T14 = FNMS(TC, TB, TA * TD);
Chris@10 328 }
Chris@10 329 {
Chris@10 330 E TG, TI, TF, TH;
Chris@10 331 TG = ri[WS(rs, 8)];
Chris@10 332 TI = ii[WS(rs, 8)];
Chris@10 333 TF = W[14];
Chris@10 334 TH = W[15];
Chris@10 335 TJ = FMA(TF, TG, TH * TI);
Chris@10 336 T15 = FNMS(TH, TG, TF * TI);
Chris@10 337 }
Chris@10 338 TK = TE + TJ;
Chris@10 339 T1a = T14 + T15;
Chris@10 340 TL = Tz + TK;
Chris@10 341 T1x = T19 + T1a;
Chris@10 342 {
Chris@10 343 E T13, T16, T18, T1b;
Chris@10 344 T13 = FNMS(KP500000000, TK, Tz);
Chris@10 345 T16 = KP866025403 * (T14 - T15);
Chris@10 346 T17 = T13 + T16;
Chris@10 347 T1o = T13 - T16;
Chris@10 348 T18 = KP866025403 * (TJ - TE);
Chris@10 349 T1b = FNMS(KP500000000, T1a, T19);
Chris@10 350 T1c = T18 + T1b;
Chris@10 351 T1n = T1b - T18;
Chris@10 352 }
Chris@10 353 }
Chris@10 354 {
Chris@10 355 E Ti, TY, Tn, TT, Ts, TU, Tt, TZ;
Chris@10 356 {
Chris@10 357 E Tf, Th, Te, Tg;
Chris@10 358 Tf = ri[WS(rs, 1)];
Chris@10 359 Th = ii[WS(rs, 1)];
Chris@10 360 Te = W[0];
Chris@10 361 Tg = W[1];
Chris@10 362 Ti = FMA(Te, Tf, Tg * Th);
Chris@10 363 TY = FNMS(Tg, Tf, Te * Th);
Chris@10 364 }
Chris@10 365 {
Chris@10 366 E Tk, Tm, Tj, Tl;
Chris@10 367 Tk = ri[WS(rs, 4)];
Chris@10 368 Tm = ii[WS(rs, 4)];
Chris@10 369 Tj = W[6];
Chris@10 370 Tl = W[7];
Chris@10 371 Tn = FMA(Tj, Tk, Tl * Tm);
Chris@10 372 TT = FNMS(Tl, Tk, Tj * Tm);
Chris@10 373 }
Chris@10 374 {
Chris@10 375 E Tp, Tr, To, Tq;
Chris@10 376 Tp = ri[WS(rs, 7)];
Chris@10 377 Tr = ii[WS(rs, 7)];
Chris@10 378 To = W[12];
Chris@10 379 Tq = W[13];
Chris@10 380 Ts = FMA(To, Tp, Tq * Tr);
Chris@10 381 TU = FNMS(Tq, Tp, To * Tr);
Chris@10 382 }
Chris@10 383 Tt = Tn + Ts;
Chris@10 384 TZ = TT + TU;
Chris@10 385 Tu = Ti + Tt;
Chris@10 386 T1w = TY + TZ;
Chris@10 387 {
Chris@10 388 E TS, TV, TX, T10;
Chris@10 389 TS = FNMS(KP500000000, Tt, Ti);
Chris@10 390 TV = KP866025403 * (TT - TU);
Chris@10 391 TW = TS + TV;
Chris@10 392 T1k = TS - TV;
Chris@10 393 TX = KP866025403 * (Ts - Tn);
Chris@10 394 T10 = FNMS(KP500000000, TZ, TY);
Chris@10 395 T11 = TX + T10;
Chris@10 396 T1l = T10 - TX;
Chris@10 397 }
Chris@10 398 }
Chris@10 399 {
Chris@10 400 E T1y, Td, TM, T1v;
Chris@10 401 T1y = KP866025403 * (T1w - T1x);
Chris@10 402 Td = T1 + Tc;
Chris@10 403 TM = Tu + TL;
Chris@10 404 T1v = FNMS(KP500000000, TM, Td);
Chris@10 405 ri[0] = Td + TM;
Chris@10 406 ri[WS(rs, 3)] = T1v + T1y;
Chris@10 407 ri[WS(rs, 6)] = T1v - T1y;
Chris@10 408 }
Chris@10 409 {
Chris@10 410 E T1D, T1z, T1C, T1E;
Chris@10 411 T1D = KP866025403 * (TL - Tu);
Chris@10 412 T1z = T1w + T1x;
Chris@10 413 T1C = T1A + T1B;
Chris@10 414 T1E = FNMS(KP500000000, T1z, T1C);
Chris@10 415 ii[0] = T1z + T1C;
Chris@10 416 ii[WS(rs, 6)] = T1E - T1D;
Chris@10 417 ii[WS(rs, 3)] = T1D + T1E;
Chris@10 418 }
Chris@10 419 {
Chris@10 420 E TR, T1I, T1e, T1J, T1i, T1F, T1f, T1K;
Chris@10 421 TR = TN + TQ;
Chris@10 422 T1I = T1G + T1H;
Chris@10 423 {
Chris@10 424 E T12, T1d, T1g, T1h;
Chris@10 425 T12 = FMA(KP766044443, TW, KP642787609 * T11);
Chris@10 426 T1d = FMA(KP173648177, T17, KP984807753 * T1c);
Chris@10 427 T1e = T12 + T1d;
Chris@10 428 T1J = KP866025403 * (T1d - T12);
Chris@10 429 T1g = FNMS(KP642787609, TW, KP766044443 * T11);
Chris@10 430 T1h = FNMS(KP984807753, T17, KP173648177 * T1c);
Chris@10 431 T1i = KP866025403 * (T1g - T1h);
Chris@10 432 T1F = T1g + T1h;
Chris@10 433 }
Chris@10 434 ri[WS(rs, 1)] = TR + T1e;
Chris@10 435 ii[WS(rs, 1)] = T1F + T1I;
Chris@10 436 T1f = FNMS(KP500000000, T1e, TR);
Chris@10 437 ri[WS(rs, 7)] = T1f - T1i;
Chris@10 438 ri[WS(rs, 4)] = T1f + T1i;
Chris@10 439 T1K = FNMS(KP500000000, T1F, T1I);
Chris@10 440 ii[WS(rs, 4)] = T1J + T1K;
Chris@10 441 ii[WS(rs, 7)] = T1K - T1J;
Chris@10 442 }
Chris@10 443 {
Chris@10 444 E T1j, T1M, T1q, T1N, T1u, T1L, T1r, T1O;
Chris@10 445 T1j = TN - TQ;
Chris@10 446 T1M = T1H - T1G;
Chris@10 447 {
Chris@10 448 E T1m, T1p, T1s, T1t;
Chris@10 449 T1m = FMA(KP173648177, T1k, KP984807753 * T1l);
Chris@10 450 T1p = FNMS(KP939692620, T1o, KP342020143 * T1n);
Chris@10 451 T1q = T1m + T1p;
Chris@10 452 T1N = KP866025403 * (T1p - T1m);
Chris@10 453 T1s = FNMS(KP984807753, T1k, KP173648177 * T1l);
Chris@10 454 T1t = FMA(KP342020143, T1o, KP939692620 * T1n);
Chris@10 455 T1u = KP866025403 * (T1s + T1t);
Chris@10 456 T1L = T1s - T1t;
Chris@10 457 }
Chris@10 458 ri[WS(rs, 2)] = T1j + T1q;
Chris@10 459 ii[WS(rs, 2)] = T1L + T1M;
Chris@10 460 T1r = FNMS(KP500000000, T1q, T1j);
Chris@10 461 ri[WS(rs, 8)] = T1r - T1u;
Chris@10 462 ri[WS(rs, 5)] = T1r + T1u;
Chris@10 463 T1O = FNMS(KP500000000, T1L, T1M);
Chris@10 464 ii[WS(rs, 5)] = T1N + T1O;
Chris@10 465 ii[WS(rs, 8)] = T1O - T1N;
Chris@10 466 }
Chris@10 467 }
Chris@10 468 }
Chris@10 469 }
Chris@10 470
Chris@10 471 static const tw_instr twinstr[] = {
Chris@10 472 {TW_FULL, 0, 9},
Chris@10 473 {TW_NEXT, 1, 0}
Chris@10 474 };
Chris@10 475
Chris@10 476 static const ct_desc desc = { 9, "t1_9", twinstr, &GENUS, {60, 36, 36, 0}, 0, 0, 0 };
Chris@10 477
Chris@10 478 void X(codelet_t1_9) (planner *p) {
Chris@10 479 X(kdft_dit_register) (p, t1_9, &desc);
Chris@10 480 }
Chris@10 481 #endif /* HAVE_FMA */