annotate src/fftw-3.3.3/dft/scalar/codelets/t1_7.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:35:48 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-dft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include t.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 72 FP additions, 66 FP multiplications,
Chris@10 32 * (or, 18 additions, 12 multiplications, 54 fused multiply/add),
Chris@10 33 * 66 stack variables, 6 constants, and 28 memory accesses
Chris@10 34 */
Chris@10 35 #include "t.h"
Chris@10 36
Chris@10 37 static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@10 40 DK(KP801937735, +0.801937735804838252472204639014890102331838324);
Chris@10 41 DK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@10 42 DK(KP692021471, +0.692021471630095869627814897002069140197260599);
Chris@10 43 DK(KP554958132, +0.554958132087371191422194871006410481067288862);
Chris@10 44 DK(KP356895867, +0.356895867892209443894399510021300583399127187);
Chris@10 45 {
Chris@10 46 INT m;
Chris@10 47 for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
Chris@10 48 E T1c, T19, T1i, T18, T16, T1q, T1t, T1r, T1u, T1s;
Chris@10 49 {
Chris@10 50 E T1, TR, T1h, Te, Tt, Tw, T1a, TM, T1g, Tr, Tu, TS, Tz, TC, Ty;
Chris@10 51 E Tv, TB;
Chris@10 52 T1 = ri[0];
Chris@10 53 T1c = ii[0];
Chris@10 54 {
Chris@10 55 E T9, Tc, TP, Ta, Tb, TO, T7;
Chris@10 56 {
Chris@10 57 E T3, T6, T8, TN, T4, T2, T5;
Chris@10 58 T3 = ri[WS(rs, 1)];
Chris@10 59 T6 = ii[WS(rs, 1)];
Chris@10 60 T2 = W[0];
Chris@10 61 T9 = ri[WS(rs, 6)];
Chris@10 62 Tc = ii[WS(rs, 6)];
Chris@10 63 T8 = W[10];
Chris@10 64 TN = T2 * T6;
Chris@10 65 T4 = T2 * T3;
Chris@10 66 T5 = W[1];
Chris@10 67 TP = T8 * Tc;
Chris@10 68 Ta = T8 * T9;
Chris@10 69 Tb = W[11];
Chris@10 70 TO = FNMS(T5, T3, TN);
Chris@10 71 T7 = FMA(T5, T6, T4);
Chris@10 72 }
Chris@10 73 {
Chris@10 74 E Tg, Tj, Th, TI, Tm, Tp, Tl, Ti, To, TQ, Td, Tf;
Chris@10 75 Tg = ri[WS(rs, 2)];
Chris@10 76 TQ = FNMS(Tb, T9, TP);
Chris@10 77 Td = FMA(Tb, Tc, Ta);
Chris@10 78 Tj = ii[WS(rs, 2)];
Chris@10 79 Tf = W[2];
Chris@10 80 T19 = TO + TQ;
Chris@10 81 TR = TO - TQ;
Chris@10 82 T1h = Td - T7;
Chris@10 83 Te = T7 + Td;
Chris@10 84 Th = Tf * Tg;
Chris@10 85 TI = Tf * Tj;
Chris@10 86 Tm = ri[WS(rs, 5)];
Chris@10 87 Tp = ii[WS(rs, 5)];
Chris@10 88 Tl = W[8];
Chris@10 89 Ti = W[3];
Chris@10 90 To = W[9];
Chris@10 91 {
Chris@10 92 E TJ, Tk, TL, Tq, TK, Tn, Ts;
Chris@10 93 Tt = ri[WS(rs, 3)];
Chris@10 94 TK = Tl * Tp;
Chris@10 95 Tn = Tl * Tm;
Chris@10 96 TJ = FNMS(Ti, Tg, TI);
Chris@10 97 Tk = FMA(Ti, Tj, Th);
Chris@10 98 TL = FNMS(To, Tm, TK);
Chris@10 99 Tq = FMA(To, Tp, Tn);
Chris@10 100 Tw = ii[WS(rs, 3)];
Chris@10 101 Ts = W[4];
Chris@10 102 T1a = TJ + TL;
Chris@10 103 TM = TJ - TL;
Chris@10 104 T1g = Tq - Tk;
Chris@10 105 Tr = Tk + Tq;
Chris@10 106 Tu = Ts * Tt;
Chris@10 107 TS = Ts * Tw;
Chris@10 108 }
Chris@10 109 Tz = ri[WS(rs, 4)];
Chris@10 110 TC = ii[WS(rs, 4)];
Chris@10 111 Ty = W[6];
Chris@10 112 Tv = W[5];
Chris@10 113 TB = W[7];
Chris@10 114 }
Chris@10 115 }
Chris@10 116 {
Chris@10 117 E TF, TT, Tx, TV, TD, T1d, TU, TA;
Chris@10 118 TF = FNMS(KP356895867, Tr, Te);
Chris@10 119 TU = Ty * TC;
Chris@10 120 TA = Ty * Tz;
Chris@10 121 TT = FNMS(Tv, Tt, TS);
Chris@10 122 Tx = FMA(Tv, Tw, Tu);
Chris@10 123 TV = FNMS(TB, Tz, TU);
Chris@10 124 TD = FMA(TB, TC, TA);
Chris@10 125 T1d = FNMS(KP356895867, T1a, T19);
Chris@10 126 {
Chris@10 127 E T1b, T15, T17, TW;
Chris@10 128 T17 = FNMS(KP554958132, TR, TM);
Chris@10 129 T1b = TT + TV;
Chris@10 130 TW = TT - TV;
Chris@10 131 {
Chris@10 132 E TE, T1l, T1e, T12;
Chris@10 133 T1i = TD - Tx;
Chris@10 134 TE = Tx + TD;
Chris@10 135 T1l = FNMS(KP356895867, T19, T1b);
Chris@10 136 T1e = FNMS(KP692021471, T1d, T1b);
Chris@10 137 ii[0] = T19 + T1a + T1b + T1c;
Chris@10 138 T12 = FMA(KP554958132, TM, TW);
Chris@10 139 {
Chris@10 140 E TX, T1o, T1j, T14;
Chris@10 141 TX = FMA(KP554958132, TW, TR);
Chris@10 142 T1o = FMA(KP554958132, T1g, T1i);
Chris@10 143 T1j = FMA(KP554958132, T1i, T1h);
Chris@10 144 T14 = FNMS(KP356895867, TE, Tr);
Chris@10 145 {
Chris@10 146 E TZ, TG, T1m, T1f;
Chris@10 147 TZ = FNMS(KP356895867, Te, TE);
Chris@10 148 TG = FNMS(KP692021471, TF, TE);
Chris@10 149 ri[0] = T1 + Te + Tr + TE;
Chris@10 150 T1m = FNMS(KP692021471, T1l, T1a);
Chris@10 151 T1f = FNMS(KP900968867, T1e, T1c);
Chris@10 152 {
Chris@10 153 E T13, TY, T1p, T1k;
Chris@10 154 T13 = FNMS(KP801937735, T12, TR);
Chris@10 155 TY = FMA(KP801937735, TX, TM);
Chris@10 156 T1p = FNMS(KP801937735, T1o, T1h);
Chris@10 157 T1k = FMA(KP801937735, T1j, T1g);
Chris@10 158 T15 = FNMS(KP692021471, T14, Te);
Chris@10 159 {
Chris@10 160 E T10, TH, T1n, T11;
Chris@10 161 T10 = FNMS(KP692021471, TZ, Tr);
Chris@10 162 TH = FNMS(KP900968867, TG, T1);
Chris@10 163 T1n = FNMS(KP900968867, T1m, T1c);
Chris@10 164 ii[WS(rs, 6)] = FNMS(KP974927912, T1k, T1f);
Chris@10 165 ii[WS(rs, 1)] = FMA(KP974927912, T1k, T1f);
Chris@10 166 T11 = FNMS(KP900968867, T10, T1);
Chris@10 167 ri[WS(rs, 1)] = FMA(KP974927912, TY, TH);
Chris@10 168 ri[WS(rs, 6)] = FNMS(KP974927912, TY, TH);
Chris@10 169 ii[WS(rs, 5)] = FNMS(KP974927912, T1p, T1n);
Chris@10 170 ii[WS(rs, 2)] = FMA(KP974927912, T1p, T1n);
Chris@10 171 ri[WS(rs, 2)] = FMA(KP974927912, T13, T11);
Chris@10 172 ri[WS(rs, 5)] = FNMS(KP974927912, T13, T11);
Chris@10 173 T18 = FNMS(KP801937735, T17, TW);
Chris@10 174 }
Chris@10 175 }
Chris@10 176 }
Chris@10 177 }
Chris@10 178 }
Chris@10 179 T16 = FNMS(KP900968867, T15, T1);
Chris@10 180 T1q = FNMS(KP356895867, T1b, T1a);
Chris@10 181 T1t = FNMS(KP554958132, T1h, T1g);
Chris@10 182 }
Chris@10 183 }
Chris@10 184 }
Chris@10 185 ri[WS(rs, 3)] = FMA(KP974927912, T18, T16);
Chris@10 186 ri[WS(rs, 4)] = FNMS(KP974927912, T18, T16);
Chris@10 187 T1r = FNMS(KP692021471, T1q, T19);
Chris@10 188 T1u = FNMS(KP801937735, T1t, T1i);
Chris@10 189 T1s = FNMS(KP900968867, T1r, T1c);
Chris@10 190 ii[WS(rs, 4)] = FNMS(KP974927912, T1u, T1s);
Chris@10 191 ii[WS(rs, 3)] = FMA(KP974927912, T1u, T1s);
Chris@10 192 }
Chris@10 193 }
Chris@10 194 }
Chris@10 195
Chris@10 196 static const tw_instr twinstr[] = {
Chris@10 197 {TW_FULL, 0, 7},
Chris@10 198 {TW_NEXT, 1, 0}
Chris@10 199 };
Chris@10 200
Chris@10 201 static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, {18, 12, 54, 0}, 0, 0, 0 };
Chris@10 202
Chris@10 203 void X(codelet_t1_7) (planner *p) {
Chris@10 204 X(kdft_dit_register) (p, t1_7, &desc);
Chris@10 205 }
Chris@10 206 #else /* HAVE_FMA */
Chris@10 207
Chris@10 208 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include t.h */
Chris@10 209
Chris@10 210 /*
Chris@10 211 * This function contains 72 FP additions, 60 FP multiplications,
Chris@10 212 * (or, 36 additions, 24 multiplications, 36 fused multiply/add),
Chris@10 213 * 29 stack variables, 6 constants, and 28 memory accesses
Chris@10 214 */
Chris@10 215 #include "t.h"
Chris@10 216
Chris@10 217 static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 218 {
Chris@10 219 DK(KP222520933, +0.222520933956314404288902564496794759466355569);
Chris@10 220 DK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@10 221 DK(KP623489801, +0.623489801858733530525004884004239810632274731);
Chris@10 222 DK(KP433883739, +0.433883739117558120475768332848358754609990728);
Chris@10 223 DK(KP781831482, +0.781831482468029808708444526674057750232334519);
Chris@10 224 DK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@10 225 {
Chris@10 226 INT m;
Chris@10 227 for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
Chris@10 228 E T1, TR, Tc, TS, TC, TO, Tn, TT, TI, TP, Ty, TU, TF, TQ;
Chris@10 229 T1 = ri[0];
Chris@10 230 TR = ii[0];
Chris@10 231 {
Chris@10 232 E T6, TA, Tb, TB;
Chris@10 233 {
Chris@10 234 E T3, T5, T2, T4;
Chris@10 235 T3 = ri[WS(rs, 1)];
Chris@10 236 T5 = ii[WS(rs, 1)];
Chris@10 237 T2 = W[0];
Chris@10 238 T4 = W[1];
Chris@10 239 T6 = FMA(T2, T3, T4 * T5);
Chris@10 240 TA = FNMS(T4, T3, T2 * T5);
Chris@10 241 }
Chris@10 242 {
Chris@10 243 E T8, Ta, T7, T9;
Chris@10 244 T8 = ri[WS(rs, 6)];
Chris@10 245 Ta = ii[WS(rs, 6)];
Chris@10 246 T7 = W[10];
Chris@10 247 T9 = W[11];
Chris@10 248 Tb = FMA(T7, T8, T9 * Ta);
Chris@10 249 TB = FNMS(T9, T8, T7 * Ta);
Chris@10 250 }
Chris@10 251 Tc = T6 + Tb;
Chris@10 252 TS = Tb - T6;
Chris@10 253 TC = TA - TB;
Chris@10 254 TO = TA + TB;
Chris@10 255 }
Chris@10 256 {
Chris@10 257 E Th, TG, Tm, TH;
Chris@10 258 {
Chris@10 259 E Te, Tg, Td, Tf;
Chris@10 260 Te = ri[WS(rs, 2)];
Chris@10 261 Tg = ii[WS(rs, 2)];
Chris@10 262 Td = W[2];
Chris@10 263 Tf = W[3];
Chris@10 264 Th = FMA(Td, Te, Tf * Tg);
Chris@10 265 TG = FNMS(Tf, Te, Td * Tg);
Chris@10 266 }
Chris@10 267 {
Chris@10 268 E Tj, Tl, Ti, Tk;
Chris@10 269 Tj = ri[WS(rs, 5)];
Chris@10 270 Tl = ii[WS(rs, 5)];
Chris@10 271 Ti = W[8];
Chris@10 272 Tk = W[9];
Chris@10 273 Tm = FMA(Ti, Tj, Tk * Tl);
Chris@10 274 TH = FNMS(Tk, Tj, Ti * Tl);
Chris@10 275 }
Chris@10 276 Tn = Th + Tm;
Chris@10 277 TT = Tm - Th;
Chris@10 278 TI = TG - TH;
Chris@10 279 TP = TG + TH;
Chris@10 280 }
Chris@10 281 {
Chris@10 282 E Ts, TD, Tx, TE;
Chris@10 283 {
Chris@10 284 E Tp, Tr, To, Tq;
Chris@10 285 Tp = ri[WS(rs, 3)];
Chris@10 286 Tr = ii[WS(rs, 3)];
Chris@10 287 To = W[4];
Chris@10 288 Tq = W[5];
Chris@10 289 Ts = FMA(To, Tp, Tq * Tr);
Chris@10 290 TD = FNMS(Tq, Tp, To * Tr);
Chris@10 291 }
Chris@10 292 {
Chris@10 293 E Tu, Tw, Tt, Tv;
Chris@10 294 Tu = ri[WS(rs, 4)];
Chris@10 295 Tw = ii[WS(rs, 4)];
Chris@10 296 Tt = W[6];
Chris@10 297 Tv = W[7];
Chris@10 298 Tx = FMA(Tt, Tu, Tv * Tw);
Chris@10 299 TE = FNMS(Tv, Tu, Tt * Tw);
Chris@10 300 }
Chris@10 301 Ty = Ts + Tx;
Chris@10 302 TU = Tx - Ts;
Chris@10 303 TF = TD - TE;
Chris@10 304 TQ = TD + TE;
Chris@10 305 }
Chris@10 306 ri[0] = T1 + Tc + Tn + Ty;
Chris@10 307 ii[0] = TO + TP + TQ + TR;
Chris@10 308 {
Chris@10 309 E TJ, Tz, TX, TY;
Chris@10 310 TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI);
Chris@10 311 Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc);
Chris@10 312 ri[WS(rs, 5)] = Tz - TJ;
Chris@10 313 ri[WS(rs, 2)] = Tz + TJ;
Chris@10 314 TX = FNMS(KP781831482, TU, KP974927912 * TS) - (KP433883739 * TT);
Chris@10 315 TY = FMA(KP623489801, TQ, TR) + FNMA(KP900968867, TP, KP222520933 * TO);
Chris@10 316 ii[WS(rs, 2)] = TX + TY;
Chris@10 317 ii[WS(rs, 5)] = TY - TX;
Chris@10 318 }
Chris@10 319 {
Chris@10 320 E TL, TK, TV, TW;
Chris@10 321 TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF);
Chris@10 322 TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn);
Chris@10 323 ri[WS(rs, 6)] = TK - TL;
Chris@10 324 ri[WS(rs, 1)] = TK + TL;
Chris@10 325 TV = FMA(KP781831482, TS, KP974927912 * TT) + (KP433883739 * TU);
Chris@10 326 TW = FMA(KP623489801, TO, TR) + FNMA(KP900968867, TQ, KP222520933 * TP);
Chris@10 327 ii[WS(rs, 1)] = TV + TW;
Chris@10 328 ii[WS(rs, 6)] = TW - TV;
Chris@10 329 }
Chris@10 330 {
Chris@10 331 E TN, TM, TZ, T10;
Chris@10 332 TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI);
Chris@10 333 TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc);
Chris@10 334 ri[WS(rs, 4)] = TM - TN;
Chris@10 335 ri[WS(rs, 3)] = TM + TN;
Chris@10 336 TZ = FMA(KP433883739, TS, KP974927912 * TU) - (KP781831482 * TT);
Chris@10 337 T10 = FMA(KP623489801, TP, TR) + FNMA(KP222520933, TQ, KP900968867 * TO);
Chris@10 338 ii[WS(rs, 3)] = TZ + T10;
Chris@10 339 ii[WS(rs, 4)] = T10 - TZ;
Chris@10 340 }
Chris@10 341 }
Chris@10 342 }
Chris@10 343 }
Chris@10 344
Chris@10 345 static const tw_instr twinstr[] = {
Chris@10 346 {TW_FULL, 0, 7},
Chris@10 347 {TW_NEXT, 1, 0}
Chris@10 348 };
Chris@10 349
Chris@10 350 static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, {36, 24, 36, 0}, 0, 0, 0 };
Chris@10 351
Chris@10 352 void X(codelet_t1_7) (planner *p) {
Chris@10 353 X(kdft_dit_register) (p, t1_7, &desc);
Chris@10 354 }
Chris@10 355 #endif /* HAVE_FMA */