annotate src/fftw-3.3.3/dft/rader.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 #include "dft.h"
Chris@10 22
Chris@10 23 /*
Chris@10 24 * Compute transforms of prime sizes using Rader's trick: turn them
Chris@10 25 * into convolutions of size n - 1, which you then perform via a pair
Chris@10 26 * of FFTs.
Chris@10 27 */
Chris@10 28
Chris@10 29 typedef struct {
Chris@10 30 solver super;
Chris@10 31 } S;
Chris@10 32
Chris@10 33 typedef struct {
Chris@10 34 plan_dft super;
Chris@10 35
Chris@10 36 plan *cld1, *cld2;
Chris@10 37 R *omega;
Chris@10 38 INT n, g, ginv;
Chris@10 39 INT is, os;
Chris@10 40 plan *cld_omega;
Chris@10 41 } P;
Chris@10 42
Chris@10 43 static rader_tl *omegas = 0;
Chris@10 44
Chris@10 45 static R *mkomega(enum wakefulness wakefulness, plan *p_, INT n, INT ginv)
Chris@10 46 {
Chris@10 47 plan_dft *p = (plan_dft *) p_;
Chris@10 48 R *omega;
Chris@10 49 INT i, gpower;
Chris@10 50 trigreal scale;
Chris@10 51 triggen *t;
Chris@10 52
Chris@10 53 if ((omega = X(rader_tl_find)(n, n, ginv, omegas)))
Chris@10 54 return omega;
Chris@10 55
Chris@10 56 omega = (R *)MALLOC(sizeof(R) * (n - 1) * 2, TWIDDLES);
Chris@10 57
Chris@10 58 scale = n - 1.0; /* normalization for convolution */
Chris@10 59
Chris@10 60 t = X(mktriggen)(wakefulness, n);
Chris@10 61 for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) {
Chris@10 62 trigreal w[2];
Chris@10 63 t->cexpl(t, gpower, w);
Chris@10 64 omega[2*i] = w[0] / scale;
Chris@10 65 omega[2*i+1] = FFT_SIGN * w[1] / scale;
Chris@10 66 }
Chris@10 67 X(triggen_destroy)(t);
Chris@10 68 A(gpower == 1);
Chris@10 69
Chris@10 70 p->apply(p_, omega, omega + 1, omega, omega + 1);
Chris@10 71
Chris@10 72 X(rader_tl_insert)(n, n, ginv, omega, &omegas);
Chris@10 73 return omega;
Chris@10 74 }
Chris@10 75
Chris@10 76 static void free_omega(R *omega)
Chris@10 77 {
Chris@10 78 X(rader_tl_delete)(omega, &omegas);
Chris@10 79 }
Chris@10 80
Chris@10 81
Chris@10 82 /***************************************************************************/
Chris@10 83
Chris@10 84 /* Below, we extensively use the identity that fft(x*)* = ifft(x) in
Chris@10 85 order to share data between forward and backward transforms and to
Chris@10 86 obviate the necessity of having separate forward and backward
Chris@10 87 plans. (Although we often compute separate plans these days anyway
Chris@10 88 due to the differing strides, etcetera.)
Chris@10 89
Chris@10 90 Of course, since the new FFTW gives us separate pointers to
Chris@10 91 the real and imaginary parts, we could have instead used the
Chris@10 92 fft(r,i) = ifft(i,r) form of this identity, but it was easier to
Chris@10 93 reuse the code from our old version. */
Chris@10 94
Chris@10 95 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
Chris@10 96 {
Chris@10 97 const P *ego = (const P *) ego_;
Chris@10 98 INT is, os;
Chris@10 99 INT k, gpower, g, r;
Chris@10 100 R *buf;
Chris@10 101 R r0 = ri[0], i0 = ii[0];
Chris@10 102
Chris@10 103 r = ego->n; is = ego->is; os = ego->os; g = ego->g;
Chris@10 104 buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS);
Chris@10 105
Chris@10 106 /* First, permute the input, storing in buf: */
Chris@10 107 for (gpower = 1, k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) {
Chris@10 108 R rA, iA;
Chris@10 109 rA = ri[gpower * is];
Chris@10 110 iA = ii[gpower * is];
Chris@10 111 buf[2*k] = rA; buf[2*k + 1] = iA;
Chris@10 112 }
Chris@10 113 /* gpower == g^(r-1) mod r == 1 */;
Chris@10 114
Chris@10 115
Chris@10 116 /* compute DFT of buf, storing in output (except DC): */
Chris@10 117 {
Chris@10 118 plan_dft *cld = (plan_dft *) ego->cld1;
Chris@10 119 cld->apply(ego->cld1, buf, buf+1, ro+os, io+os);
Chris@10 120 }
Chris@10 121
Chris@10 122 /* set output DC component: */
Chris@10 123 {
Chris@10 124 ro[0] = r0 + ro[os];
Chris@10 125 io[0] = i0 + io[os];
Chris@10 126 }
Chris@10 127
Chris@10 128 /* now, multiply by omega: */
Chris@10 129 {
Chris@10 130 const R *omega = ego->omega;
Chris@10 131 for (k = 0; k < r - 1; ++k) {
Chris@10 132 E rB, iB, rW, iW;
Chris@10 133 rW = omega[2*k];
Chris@10 134 iW = omega[2*k+1];
Chris@10 135 rB = ro[(k+1)*os];
Chris@10 136 iB = io[(k+1)*os];
Chris@10 137 ro[(k+1)*os] = rW * rB - iW * iB;
Chris@10 138 io[(k+1)*os] = -(rW * iB + iW * rB);
Chris@10 139 }
Chris@10 140 }
Chris@10 141
Chris@10 142 /* this will add input[0] to all of the outputs after the ifft */
Chris@10 143 ro[os] += r0;
Chris@10 144 io[os] -= i0;
Chris@10 145
Chris@10 146 /* inverse FFT: */
Chris@10 147 {
Chris@10 148 plan_dft *cld = (plan_dft *) ego->cld2;
Chris@10 149 cld->apply(ego->cld2, ro+os, io+os, buf, buf+1);
Chris@10 150 }
Chris@10 151
Chris@10 152 /* finally, do inverse permutation to unshuffle the output: */
Chris@10 153 {
Chris@10 154 INT ginv = ego->ginv;
Chris@10 155 gpower = 1;
Chris@10 156 for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) {
Chris@10 157 ro[gpower * os] = buf[2*k];
Chris@10 158 io[gpower * os] = -buf[2*k+1];
Chris@10 159 }
Chris@10 160 A(gpower == 1);
Chris@10 161 }
Chris@10 162
Chris@10 163
Chris@10 164 X(ifree)(buf);
Chris@10 165 }
Chris@10 166
Chris@10 167 /***************************************************************************/
Chris@10 168
Chris@10 169 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 170 {
Chris@10 171 P *ego = (P *) ego_;
Chris@10 172
Chris@10 173 X(plan_awake)(ego->cld1, wakefulness);
Chris@10 174 X(plan_awake)(ego->cld2, wakefulness);
Chris@10 175 X(plan_awake)(ego->cld_omega, wakefulness);
Chris@10 176
Chris@10 177 switch (wakefulness) {
Chris@10 178 case SLEEPY:
Chris@10 179 free_omega(ego->omega);
Chris@10 180 ego->omega = 0;
Chris@10 181 break;
Chris@10 182 default:
Chris@10 183 ego->g = X(find_generator)(ego->n);
Chris@10 184 ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n);
Chris@10 185 A(MULMOD(ego->g, ego->ginv, ego->n) == 1);
Chris@10 186
Chris@10 187 ego->omega = mkomega(wakefulness,
Chris@10 188 ego->cld_omega, ego->n, ego->ginv);
Chris@10 189 break;
Chris@10 190 }
Chris@10 191 }
Chris@10 192
Chris@10 193 static void destroy(plan *ego_)
Chris@10 194 {
Chris@10 195 P *ego = (P *) ego_;
Chris@10 196 X(plan_destroy_internal)(ego->cld_omega);
Chris@10 197 X(plan_destroy_internal)(ego->cld2);
Chris@10 198 X(plan_destroy_internal)(ego->cld1);
Chris@10 199 }
Chris@10 200
Chris@10 201 static void print(const plan *ego_, printer *p)
Chris@10 202 {
Chris@10 203 const P *ego = (const P *)ego_;
Chris@10 204 p->print(p, "(dft-rader-%D%ois=%oos=%(%p%)",
Chris@10 205 ego->n, ego->is, ego->os, ego->cld1);
Chris@10 206 if (ego->cld2 != ego->cld1)
Chris@10 207 p->print(p, "%(%p%)", ego->cld2);
Chris@10 208 if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2)
Chris@10 209 p->print(p, "%(%p%)", ego->cld_omega);
Chris@10 210 p->putchr(p, ')');
Chris@10 211 }
Chris@10 212
Chris@10 213 static int applicable(const solver *ego_, const problem *p_,
Chris@10 214 const planner *plnr)
Chris@10 215 {
Chris@10 216 const problem_dft *p = (const problem_dft *) p_;
Chris@10 217 UNUSED(ego_);
Chris@10 218 return (1
Chris@10 219 && p->sz->rnk == 1
Chris@10 220 && p->vecsz->rnk == 0
Chris@10 221 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW)
Chris@10 222 && X(is_prime)(p->sz->dims[0].n)
Chris@10 223
Chris@10 224 /* proclaim the solver SLOW if p-1 is not easily factorizable.
Chris@10 225 Bluestein should take care of this case. */
Chris@10 226 && CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1))
Chris@10 227 );
Chris@10 228 }
Chris@10 229
Chris@10 230 static int mkP(P *pln, INT n, INT is, INT os, R *ro, R *io,
Chris@10 231 planner *plnr)
Chris@10 232 {
Chris@10 233 plan *cld1 = (plan *) 0;
Chris@10 234 plan *cld2 = (plan *) 0;
Chris@10 235 plan *cld_omega = (plan *) 0;
Chris@10 236 R *buf = (R *) 0;
Chris@10 237
Chris@10 238 /* initial allocation for the purpose of planning */
Chris@10 239 buf = (R *) MALLOC(sizeof(R) * (n - 1) * 2, BUFFERS);
Chris@10 240
Chris@10 241 cld1 = X(mkplan_f_d)(plnr,
Chris@10 242 X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, os),
Chris@10 243 X(mktensor_1d)(1, 0, 0),
Chris@10 244 buf, buf + 1, ro + os, io + os),
Chris@10 245 NO_SLOW, 0, 0);
Chris@10 246 if (!cld1) goto nada;
Chris@10 247
Chris@10 248 cld2 = X(mkplan_f_d)(plnr,
Chris@10 249 X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, os, 2),
Chris@10 250 X(mktensor_1d)(1, 0, 0),
Chris@10 251 ro + os, io + os, buf, buf + 1),
Chris@10 252 NO_SLOW, 0, 0);
Chris@10 253
Chris@10 254 if (!cld2) goto nada;
Chris@10 255
Chris@10 256 /* plan for omega array */
Chris@10 257 cld_omega = X(mkplan_f_d)(plnr,
Chris@10 258 X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, 2),
Chris@10 259 X(mktensor_1d)(1, 0, 0),
Chris@10 260 buf, buf + 1, buf, buf + 1),
Chris@10 261 NO_SLOW, ESTIMATE, 0);
Chris@10 262 if (!cld_omega) goto nada;
Chris@10 263
Chris@10 264 /* deallocate buffers; let awake() or apply() allocate them for real */
Chris@10 265 X(ifree)(buf);
Chris@10 266 buf = 0;
Chris@10 267
Chris@10 268 pln->cld1 = cld1;
Chris@10 269 pln->cld2 = cld2;
Chris@10 270 pln->cld_omega = cld_omega;
Chris@10 271 pln->omega = 0;
Chris@10 272 pln->n = n;
Chris@10 273 pln->is = is;
Chris@10 274 pln->os = os;
Chris@10 275
Chris@10 276 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
Chris@10 277 pln->super.super.ops.other += (n - 1) * (4 * 2 + 6) + 6;
Chris@10 278 pln->super.super.ops.add += (n - 1) * 2 + 4;
Chris@10 279 pln->super.super.ops.mul += (n - 1) * 4;
Chris@10 280
Chris@10 281 return 1;
Chris@10 282
Chris@10 283 nada:
Chris@10 284 X(ifree0)(buf);
Chris@10 285 X(plan_destroy_internal)(cld_omega);
Chris@10 286 X(plan_destroy_internal)(cld2);
Chris@10 287 X(plan_destroy_internal)(cld1);
Chris@10 288 return 0;
Chris@10 289 }
Chris@10 290
Chris@10 291 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
Chris@10 292 {
Chris@10 293 const problem_dft *p = (const problem_dft *) p_;
Chris@10 294 P *pln;
Chris@10 295 INT n;
Chris@10 296 INT is, os;
Chris@10 297
Chris@10 298 static const plan_adt padt = {
Chris@10 299 X(dft_solve), awake, print, destroy
Chris@10 300 };
Chris@10 301
Chris@10 302 if (!applicable(ego, p_, plnr))
Chris@10 303 return (plan *) 0;
Chris@10 304
Chris@10 305 n = p->sz->dims[0].n;
Chris@10 306 is = p->sz->dims[0].is;
Chris@10 307 os = p->sz->dims[0].os;
Chris@10 308
Chris@10 309 pln = MKPLAN_DFT(P, &padt, apply);
Chris@10 310 if (!mkP(pln, n, is, os, p->ro, p->io, plnr)) {
Chris@10 311 X(ifree)(pln);
Chris@10 312 return (plan *) 0;
Chris@10 313 }
Chris@10 314 return &(pln->super.super);
Chris@10 315 }
Chris@10 316
Chris@10 317 static solver *mksolver(void)
Chris@10 318 {
Chris@10 319 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
Chris@10 320 S *slv = MKSOLVER(S, &sadt);
Chris@10 321 return &(slv->super);
Chris@10 322 }
Chris@10 323
Chris@10 324 void X(dft_rader_register)(planner *p)
Chris@10 325 {
Chris@10 326 REGISTER_SOLVER(p, mksolver());
Chris@10 327 }