annotate src/fftw-3.3.3/dft/indirect-transpose.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* solvers/plans for vectors of DFTs corresponding to the columns
Chris@10 22 of a matrix: first transpose the matrix so that the DFTs are
Chris@10 23 contiguous, then do DFTs with transposed output. In particular,
Chris@10 24 we restrict ourselves to the case of a square transpose (or a
Chris@10 25 sequence thereof). */
Chris@10 26
Chris@10 27 #include "dft.h"
Chris@10 28
Chris@10 29 typedef solver S;
Chris@10 30
Chris@10 31 typedef struct {
Chris@10 32 plan_dft super;
Chris@10 33 INT vl, ivs, ovs;
Chris@10 34 plan *cldtrans, *cld, *cldrest;
Chris@10 35 } P;
Chris@10 36
Chris@10 37 /* initial transpose is out-of-place from input to output */
Chris@10 38 static void apply_op(const plan *ego_, R *ri, R *ii, R *ro, R *io)
Chris@10 39 {
Chris@10 40 const P *ego = (const P *) ego_;
Chris@10 41 INT vl = ego->vl, ivs = ego->ivs, ovs = ego->ovs, i;
Chris@10 42
Chris@10 43 for (i = 0; i < vl; ++i) {
Chris@10 44 {
Chris@10 45 plan_dft *cldtrans = (plan_dft *) ego->cldtrans;
Chris@10 46 cldtrans->apply(ego->cldtrans, ri, ii, ro, io);
Chris@10 47 }
Chris@10 48 {
Chris@10 49 plan_dft *cld = (plan_dft *) ego->cld;
Chris@10 50 cld->apply(ego->cld, ro, io, ro, io);
Chris@10 51 }
Chris@10 52 ri += ivs; ii += ivs;
Chris@10 53 ro += ovs; io += ovs;
Chris@10 54 }
Chris@10 55 {
Chris@10 56 plan_dft *cldrest = (plan_dft *) ego->cldrest;
Chris@10 57 cldrest->apply(ego->cldrest, ri, ii, ro, io);
Chris@10 58 }
Chris@10 59 }
Chris@10 60
Chris@10 61 static void destroy(plan *ego_)
Chris@10 62 {
Chris@10 63 P *ego = (P *) ego_;
Chris@10 64 X(plan_destroy_internal)(ego->cldrest);
Chris@10 65 X(plan_destroy_internal)(ego->cld);
Chris@10 66 X(plan_destroy_internal)(ego->cldtrans);
Chris@10 67 }
Chris@10 68
Chris@10 69 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 70 {
Chris@10 71 P *ego = (P *) ego_;
Chris@10 72 X(plan_awake)(ego->cldtrans, wakefulness);
Chris@10 73 X(plan_awake)(ego->cld, wakefulness);
Chris@10 74 X(plan_awake)(ego->cldrest, wakefulness);
Chris@10 75 }
Chris@10 76
Chris@10 77 static void print(const plan *ego_, printer *p)
Chris@10 78 {
Chris@10 79 const P *ego = (const P *) ego_;
Chris@10 80 p->print(p, "(indirect-transpose%v%(%p%)%(%p%)%(%p%))",
Chris@10 81 ego->vl, ego->cldtrans, ego->cld, ego->cldrest);
Chris@10 82 }
Chris@10 83
Chris@10 84 static int pickdim(const tensor *vs, const tensor *s, int *pdim0, int *pdim1)
Chris@10 85 {
Chris@10 86 int dim0, dim1;
Chris@10 87 *pdim0 = *pdim1 = -1;
Chris@10 88 for (dim0 = 0; dim0 < vs->rnk; ++dim0)
Chris@10 89 for (dim1 = 0; dim1 < s->rnk; ++dim1)
Chris@10 90 if (vs->dims[dim0].n * X(iabs)(vs->dims[dim0].is) <= X(iabs)(s->dims[dim1].is)
Chris@10 91 && vs->dims[dim0].n >= s->dims[dim1].n
Chris@10 92 && (*pdim0 == -1
Chris@10 93 || (X(iabs)(vs->dims[dim0].is) <= X(iabs)(vs->dims[*pdim0].is)
Chris@10 94 && X(iabs)(s->dims[dim1].is) >= X(iabs)(s->dims[*pdim1].is)))) {
Chris@10 95 *pdim0 = dim0;
Chris@10 96 *pdim1 = dim1;
Chris@10 97 }
Chris@10 98 return (*pdim0 != -1 && *pdim1 != -1);
Chris@10 99 }
Chris@10 100
Chris@10 101 static int applicable0(const solver *ego_, const problem *p_,
Chris@10 102 const planner *plnr,
Chris@10 103 int *pdim0, int *pdim1)
Chris@10 104 {
Chris@10 105 const problem_dft *p = (const problem_dft *) p_;
Chris@10 106 UNUSED(ego_); UNUSED(plnr);
Chris@10 107
Chris@10 108 return (1
Chris@10 109 && FINITE_RNK(p->vecsz->rnk) && FINITE_RNK(p->sz->rnk)
Chris@10 110
Chris@10 111 /* FIXME: can/should we relax this constraint? */
Chris@10 112 && X(tensor_inplace_strides2)(p->vecsz, p->sz)
Chris@10 113
Chris@10 114 && pickdim(p->vecsz, p->sz, pdim0, pdim1)
Chris@10 115
Chris@10 116 /* output should not *already* include the transpose
Chris@10 117 (in which case we duplicate the regular indirect.c) */
Chris@10 118 && (p->sz->dims[*pdim1].os != p->vecsz->dims[*pdim0].is)
Chris@10 119 );
Chris@10 120 }
Chris@10 121
Chris@10 122 static int applicable(const solver *ego_, const problem *p_,
Chris@10 123 const planner *plnr,
Chris@10 124 int *pdim0, int *pdim1)
Chris@10 125 {
Chris@10 126 if (!applicable0(ego_, p_, plnr, pdim0, pdim1)) return 0;
Chris@10 127 {
Chris@10 128 const problem_dft *p = (const problem_dft *) p_;
Chris@10 129 INT u = p->ri == p->ii + 1 || p->ii == p->ri + 1 ? (INT)2 : (INT)1;
Chris@10 130
Chris@10 131 /* UGLY if does not result in contiguous transforms or
Chris@10 132 transforms of contiguous vectors (since the latter at
Chris@10 133 least have efficient transpositions) */
Chris@10 134 if (NO_UGLYP(plnr)
Chris@10 135 && p->vecsz->dims[*pdim0].is != u
Chris@10 136 && !(p->vecsz->rnk == 2
Chris@10 137 && p->vecsz->dims[1-*pdim0].is == u
Chris@10 138 && p->vecsz->dims[*pdim0].is
Chris@10 139 == u * p->vecsz->dims[1-*pdim0].n))
Chris@10 140 return 0;
Chris@10 141
Chris@10 142 if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0;
Chris@10 143 }
Chris@10 144 return 1;
Chris@10 145 }
Chris@10 146
Chris@10 147 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 148 {
Chris@10 149 const problem_dft *p = (const problem_dft *) p_;
Chris@10 150 P *pln;
Chris@10 151 plan *cld = 0, *cldtrans = 0, *cldrest = 0;
Chris@10 152 int pdim0, pdim1;
Chris@10 153 tensor *ts, *tv;
Chris@10 154 INT vl, ivs, ovs;
Chris@10 155 R *rit, *iit, *rot, *iot;
Chris@10 156
Chris@10 157 static const plan_adt padt = {
Chris@10 158 X(dft_solve), awake, print, destroy
Chris@10 159 };
Chris@10 160
Chris@10 161 if (!applicable(ego_, p_, plnr, &pdim0, &pdim1))
Chris@10 162 return (plan *) 0;
Chris@10 163
Chris@10 164 vl = p->vecsz->dims[pdim0].n / p->sz->dims[pdim1].n;
Chris@10 165 A(vl >= 1);
Chris@10 166 ivs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].is;
Chris@10 167 ovs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].os;
Chris@10 168 rit = TAINT(p->ri, vl == 1 ? 0 : ivs);
Chris@10 169 iit = TAINT(p->ii, vl == 1 ? 0 : ivs);
Chris@10 170 rot = TAINT(p->ro, vl == 1 ? 0 : ovs);
Chris@10 171 iot = TAINT(p->io, vl == 1 ? 0 : ovs);
Chris@10 172
Chris@10 173 ts = X(tensor_copy_inplace)(p->sz, INPLACE_IS);
Chris@10 174 ts->dims[pdim1].os = p->vecsz->dims[pdim0].is;
Chris@10 175 tv = X(tensor_copy_inplace)(p->vecsz, INPLACE_IS);
Chris@10 176 tv->dims[pdim0].os = p->sz->dims[pdim1].is;
Chris@10 177 tv->dims[pdim0].n = p->sz->dims[pdim1].n;
Chris@10 178 cldtrans = X(mkplan_d)(plnr,
Chris@10 179 X(mkproblem_dft_d)(X(mktensor_0d)(),
Chris@10 180 X(tensor_append)(tv, ts),
Chris@10 181 rit, iit,
Chris@10 182 rot, iot));
Chris@10 183 X(tensor_destroy2)(ts, tv);
Chris@10 184 if (!cldtrans) goto nada;
Chris@10 185
Chris@10 186 ts = X(tensor_copy)(p->sz);
Chris@10 187 ts->dims[pdim1].is = p->vecsz->dims[pdim0].is;
Chris@10 188 tv = X(tensor_copy)(p->vecsz);
Chris@10 189 tv->dims[pdim0].is = p->sz->dims[pdim1].is;
Chris@10 190 tv->dims[pdim0].n = p->sz->dims[pdim1].n;
Chris@10 191 cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)(ts, tv,
Chris@10 192 rot, iot,
Chris@10 193 rot, iot));
Chris@10 194 if (!cld) goto nada;
Chris@10 195
Chris@10 196 tv = X(tensor_copy)(p->vecsz);
Chris@10 197 tv->dims[pdim0].n -= vl * p->sz->dims[pdim1].n;
Chris@10 198 cldrest = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(tensor_copy)(p->sz), tv,
Chris@10 199 p->ri + ivs * vl,
Chris@10 200 p->ii + ivs * vl,
Chris@10 201 p->ro + ovs * vl,
Chris@10 202 p->io + ovs * vl));
Chris@10 203 if (!cldrest) goto nada;
Chris@10 204
Chris@10 205 pln = MKPLAN_DFT(P, &padt, apply_op);
Chris@10 206 pln->cldtrans = cldtrans;
Chris@10 207 pln->cld = cld;
Chris@10 208 pln->cldrest = cldrest;
Chris@10 209 pln->vl = vl;
Chris@10 210 pln->ivs = ivs;
Chris@10 211 pln->ovs = ovs;
Chris@10 212 X(ops_cpy)(&cldrest->ops, &pln->super.super.ops);
Chris@10 213 X(ops_madd2)(vl, &cld->ops, &pln->super.super.ops);
Chris@10 214 X(ops_madd2)(vl, &cldtrans->ops, &pln->super.super.ops);
Chris@10 215 return &(pln->super.super);
Chris@10 216
Chris@10 217 nada:
Chris@10 218 X(plan_destroy_internal)(cldrest);
Chris@10 219 X(plan_destroy_internal)(cld);
Chris@10 220 X(plan_destroy_internal)(cldtrans);
Chris@10 221 return (plan *)0;
Chris@10 222 }
Chris@10 223
Chris@10 224 static solver *mksolver(void)
Chris@10 225 {
Chris@10 226 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
Chris@10 227 S *slv = MKSOLVER(S, &sadt);
Chris@10 228 return slv;
Chris@10 229 }
Chris@10 230
Chris@10 231 void X(dft_indirect_transpose_register)(planner *p)
Chris@10 232 {
Chris@10 233 REGISTER_SOLVER(p, mksolver());
Chris@10 234 }