annotate osx/include/kj/async-io.h @ 79:91c729825bca pa_catalina

Update build for AUDIO_COMPONENT_FIX
author Chris Cannam
date Wed, 30 Oct 2019 12:40:34 +0000
parents 0994c39f1e94
children
rev   line source
cannam@62 1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
cannam@62 2 // Licensed under the MIT License:
cannam@62 3 //
cannam@62 4 // Permission is hereby granted, free of charge, to any person obtaining a copy
cannam@62 5 // of this software and associated documentation files (the "Software"), to deal
cannam@62 6 // in the Software without restriction, including without limitation the rights
cannam@62 7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
cannam@62 8 // copies of the Software, and to permit persons to whom the Software is
cannam@62 9 // furnished to do so, subject to the following conditions:
cannam@62 10 //
cannam@62 11 // The above copyright notice and this permission notice shall be included in
cannam@62 12 // all copies or substantial portions of the Software.
cannam@62 13 //
cannam@62 14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
cannam@62 15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
cannam@62 16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
cannam@62 17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
cannam@62 18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
cannam@62 19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
cannam@62 20 // THE SOFTWARE.
cannam@62 21
cannam@62 22 #ifndef KJ_ASYNC_IO_H_
cannam@62 23 #define KJ_ASYNC_IO_H_
cannam@62 24
cannam@62 25 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
cannam@62 26 #pragma GCC system_header
cannam@62 27 #endif
cannam@62 28
cannam@62 29 #include "async.h"
cannam@62 30 #include "function.h"
cannam@62 31 #include "thread.h"
cannam@62 32 #include "time.h"
cannam@62 33
cannam@62 34 struct sockaddr;
cannam@62 35
cannam@62 36 namespace kj {
cannam@62 37
cannam@62 38 #if _WIN32
cannam@62 39 class Win32EventPort;
cannam@62 40 #else
cannam@62 41 class UnixEventPort;
cannam@62 42 #endif
cannam@62 43
cannam@62 44 class NetworkAddress;
cannam@62 45 class AsyncOutputStream;
cannam@62 46
cannam@62 47 // =======================================================================================
cannam@62 48 // Streaming I/O
cannam@62 49
cannam@62 50 class AsyncInputStream {
cannam@62 51 // Asynchronous equivalent of InputStream (from io.h).
cannam@62 52
cannam@62 53 public:
cannam@62 54 virtual Promise<size_t> read(void* buffer, size_t minBytes, size_t maxBytes);
cannam@62 55 virtual Promise<size_t> tryRead(void* buffer, size_t minBytes, size_t maxBytes) = 0;
cannam@62 56
cannam@62 57 Promise<void> read(void* buffer, size_t bytes);
cannam@62 58
cannam@62 59 virtual Maybe<uint64_t> tryGetLength();
cannam@62 60 // Get the remaining number of bytes that will be produced by this stream, if known.
cannam@62 61 //
cannam@62 62 // This is used e.g. to fill in the Content-Length header of an HTTP message. If unknown, the
cannam@62 63 // HTTP implementation may need to fall back to Transfer-Encoding: chunked.
cannam@62 64 //
cannam@62 65 // The default implementation always returns null.
cannam@62 66
cannam@62 67 virtual Promise<uint64_t> pumpTo(
cannam@62 68 AsyncOutputStream& output, uint64_t amount = kj::maxValue);
cannam@62 69 // Read `amount` bytes from this stream (or to EOF) and write them to `output`, returning the
cannam@62 70 // total bytes actually pumped (which is only less than `amount` if EOF was reached).
cannam@62 71 //
cannam@62 72 // Override this if your stream type knows how to pump itself to certain kinds of output
cannam@62 73 // streams more efficiently than via the naive approach. You can use
cannam@62 74 // kj::dynamicDowncastIfAvailable() to test for stream types you recognize, and if none match,
cannam@62 75 // delegate to the default implementation.
cannam@62 76 //
cannam@62 77 // The default implementation first tries calling output.tryPumpFrom(), but if that fails, it
cannam@62 78 // performs a naive pump by allocating a buffer and reading to it / writing from it in a loop.
cannam@62 79
cannam@62 80 Promise<Array<byte>> readAllBytes();
cannam@62 81 Promise<String> readAllText();
cannam@62 82 // Read until EOF and return as one big byte array or string.
cannam@62 83 };
cannam@62 84
cannam@62 85 class AsyncOutputStream {
cannam@62 86 // Asynchronous equivalent of OutputStream (from io.h).
cannam@62 87
cannam@62 88 public:
cannam@62 89 virtual Promise<void> write(const void* buffer, size_t size) = 0;
cannam@62 90 virtual Promise<void> write(ArrayPtr<const ArrayPtr<const byte>> pieces) = 0;
cannam@62 91
cannam@62 92 virtual Maybe<Promise<uint64_t>> tryPumpFrom(
cannam@62 93 AsyncInputStream& input, uint64_t amount = kj::maxValue);
cannam@62 94 // Implements double-dispatch for AsyncInputStream::pumpTo().
cannam@62 95 //
cannam@62 96 // This method should only be called from within an implementation of pumpTo().
cannam@62 97 //
cannam@62 98 // This method examines the type of `input` to find optimized ways to pump data from it to this
cannam@62 99 // output stream. If it finds one, it performs the pump. Otherwise, it returns null.
cannam@62 100 //
cannam@62 101 // The default implementation always returns null.
cannam@62 102 };
cannam@62 103
cannam@62 104 class AsyncIoStream: public AsyncInputStream, public AsyncOutputStream {
cannam@62 105 // A combination input and output stream.
cannam@62 106
cannam@62 107 public:
cannam@62 108 virtual void shutdownWrite() = 0;
cannam@62 109 // Cleanly shut down just the write end of the stream, while keeping the read end open.
cannam@62 110
cannam@62 111 virtual void abortRead() {}
cannam@62 112 // Similar to shutdownWrite, but this will shut down the read end of the stream, and should only
cannam@62 113 // be called when an error has occurred.
cannam@62 114
cannam@62 115 virtual void getsockopt(int level, int option, void* value, uint* length);
cannam@62 116 virtual void setsockopt(int level, int option, const void* value, uint length);
cannam@62 117 // Corresponds to getsockopt() and setsockopt() syscalls. Will throw an "unimplemented" exception
cannam@62 118 // if the stream is not a socket or the option is not appropriate for the socket type. The
cannam@62 119 // default implementations always throw "unimplemented".
cannam@62 120
cannam@62 121 virtual void getsockname(struct sockaddr* addr, uint* length);
cannam@62 122 virtual void getpeername(struct sockaddr* addr, uint* length);
cannam@62 123 // Corresponds to getsockname() and getpeername() syscalls. Will throw an "unimplemented"
cannam@62 124 // exception if the stream is not a socket. The default implementations always throw
cannam@62 125 // "unimplemented".
cannam@62 126 //
cannam@62 127 // Note that we don't provide methods that return NetworkAddress because it usually wouldn't
cannam@62 128 // be useful. You can't connect() to or listen() on these addresses, obviously, because they are
cannam@62 129 // ephemeral addresses for a single connection.
cannam@62 130 };
cannam@62 131
cannam@62 132 struct OneWayPipe {
cannam@62 133 // A data pipe with an input end and an output end. (Typically backed by pipe() system call.)
cannam@62 134
cannam@62 135 Own<AsyncInputStream> in;
cannam@62 136 Own<AsyncOutputStream> out;
cannam@62 137 };
cannam@62 138
cannam@62 139 struct TwoWayPipe {
cannam@62 140 // A data pipe that supports sending in both directions. Each end's output sends data to the
cannam@62 141 // other end's input. (Typically backed by socketpair() system call.)
cannam@62 142
cannam@62 143 Own<AsyncIoStream> ends[2];
cannam@62 144 };
cannam@62 145
cannam@62 146 class ConnectionReceiver {
cannam@62 147 // Represents a server socket listening on a port.
cannam@62 148
cannam@62 149 public:
cannam@62 150 virtual Promise<Own<AsyncIoStream>> accept() = 0;
cannam@62 151 // Accept the next incoming connection.
cannam@62 152
cannam@62 153 virtual uint getPort() = 0;
cannam@62 154 // Gets the port number, if applicable (i.e. if listening on IP). This is useful if you didn't
cannam@62 155 // specify a port when constructing the NetworkAddress -- one will have been assigned
cannam@62 156 // automatically.
cannam@62 157
cannam@62 158 virtual void getsockopt(int level, int option, void* value, uint* length);
cannam@62 159 virtual void setsockopt(int level, int option, const void* value, uint length);
cannam@62 160 // Same as the methods of AsyncIoStream.
cannam@62 161 };
cannam@62 162
cannam@62 163 // =======================================================================================
cannam@62 164 // Datagram I/O
cannam@62 165
cannam@62 166 class AncillaryMessage {
cannam@62 167 // Represents an ancillary message (aka control message) received using the recvmsg() system
cannam@62 168 // call (or equivalent). Most apps will not use this.
cannam@62 169
cannam@62 170 public:
cannam@62 171 inline AncillaryMessage(int level, int type, ArrayPtr<const byte> data);
cannam@62 172 AncillaryMessage() = default;
cannam@62 173
cannam@62 174 inline int getLevel() const;
cannam@62 175 // Originating protocol / socket level.
cannam@62 176
cannam@62 177 inline int getType() const;
cannam@62 178 // Protocol-specific message type.
cannam@62 179
cannam@62 180 template <typename T>
cannam@62 181 inline Maybe<const T&> as();
cannam@62 182 // Interpret the ancillary message as the given struct type. Most ancillary messages are some
cannam@62 183 // sort of struct, so this is a convenient way to access it. Returns nullptr if the message
cannam@62 184 // is smaller than the struct -- this can happen if the message was truncated due to
cannam@62 185 // insufficient ancillary buffer space.
cannam@62 186
cannam@62 187 template <typename T>
cannam@62 188 inline ArrayPtr<const T> asArray();
cannam@62 189 // Interpret the ancillary message as an array of items. If the message size does not evenly
cannam@62 190 // divide into elements of type T, the remainder is discarded -- this can happen if the message
cannam@62 191 // was truncated due to insufficient ancillary buffer space.
cannam@62 192
cannam@62 193 private:
cannam@62 194 int level;
cannam@62 195 int type;
cannam@62 196 ArrayPtr<const byte> data;
cannam@62 197 // Message data. In most cases you should use `as()` or `asArray()`.
cannam@62 198 };
cannam@62 199
cannam@62 200 class DatagramReceiver {
cannam@62 201 // Class encapsulating the recvmsg() system call. You must specify the DatagramReceiver's
cannam@62 202 // capacity in advance; if a received packet is larger than the capacity, it will be truncated.
cannam@62 203
cannam@62 204 public:
cannam@62 205 virtual Promise<void> receive() = 0;
cannam@62 206 // Receive a new message, overwriting this object's content.
cannam@62 207 //
cannam@62 208 // receive() may reuse the same buffers for content and ancillary data with each call.
cannam@62 209
cannam@62 210 template <typename T>
cannam@62 211 struct MaybeTruncated {
cannam@62 212 T value;
cannam@62 213
cannam@62 214 bool isTruncated;
cannam@62 215 // True if the Receiver's capacity was insufficient to receive the value and therefore the
cannam@62 216 // value is truncated.
cannam@62 217 };
cannam@62 218
cannam@62 219 virtual MaybeTruncated<ArrayPtr<const byte>> getContent() = 0;
cannam@62 220 // Get the content of the datagram.
cannam@62 221
cannam@62 222 virtual MaybeTruncated<ArrayPtr<const AncillaryMessage>> getAncillary() = 0;
cannam@62 223 // Ancilarry messages received with the datagram. See the recvmsg() system call and the cmsghdr
cannam@62 224 // struct. Most apps don't need this.
cannam@62 225 //
cannam@62 226 // If the returned value is truncated, then the last message in the array may itself be
cannam@62 227 // truncated, meaning its as<T>() method will return nullptr or its asArray<T>() method will
cannam@62 228 // return fewer elements than expected. Truncation can also mean that additional messages were
cannam@62 229 // available but discarded.
cannam@62 230
cannam@62 231 virtual NetworkAddress& getSource() = 0;
cannam@62 232 // Get the datagram sender's address.
cannam@62 233
cannam@62 234 struct Capacity {
cannam@62 235 size_t content = 8192;
cannam@62 236 // How much space to allocate for the datagram content. If a datagram is received that is
cannam@62 237 // larger than this, it will be truncated, with no way to recover the tail.
cannam@62 238
cannam@62 239 size_t ancillary = 0;
cannam@62 240 // How much space to allocate for ancillary messages. As with content, if the ancillary data
cannam@62 241 // is larger than this, it will be truncated.
cannam@62 242 };
cannam@62 243 };
cannam@62 244
cannam@62 245 class DatagramPort {
cannam@62 246 public:
cannam@62 247 virtual Promise<size_t> send(const void* buffer, size_t size, NetworkAddress& destination) = 0;
cannam@62 248 virtual Promise<size_t> send(ArrayPtr<const ArrayPtr<const byte>> pieces,
cannam@62 249 NetworkAddress& destination) = 0;
cannam@62 250
cannam@62 251 virtual Own<DatagramReceiver> makeReceiver(
cannam@62 252 DatagramReceiver::Capacity capacity = DatagramReceiver::Capacity()) = 0;
cannam@62 253 // Create a new `Receiver` that can be used to receive datagrams. `capacity` specifies how much
cannam@62 254 // space to allocate for the received message. The `DatagramPort` must outlive the `Receiver`.
cannam@62 255
cannam@62 256 virtual uint getPort() = 0;
cannam@62 257 // Gets the port number, if applicable (i.e. if listening on IP). This is useful if you didn't
cannam@62 258 // specify a port when constructing the NetworkAddress -- one will have been assigned
cannam@62 259 // automatically.
cannam@62 260
cannam@62 261 virtual void getsockopt(int level, int option, void* value, uint* length);
cannam@62 262 virtual void setsockopt(int level, int option, const void* value, uint length);
cannam@62 263 // Same as the methods of AsyncIoStream.
cannam@62 264 };
cannam@62 265
cannam@62 266 // =======================================================================================
cannam@62 267 // Networks
cannam@62 268
cannam@62 269 class NetworkAddress {
cannam@62 270 // Represents a remote address to which the application can connect.
cannam@62 271
cannam@62 272 public:
cannam@62 273 virtual Promise<Own<AsyncIoStream>> connect() = 0;
cannam@62 274 // Make a new connection to this address.
cannam@62 275 //
cannam@62 276 // The address must not be a wildcard ("*"). If it is an IP address, it must have a port number.
cannam@62 277
cannam@62 278 virtual Own<ConnectionReceiver> listen() = 0;
cannam@62 279 // Listen for incoming connections on this address.
cannam@62 280 //
cannam@62 281 // The address must be local.
cannam@62 282
cannam@62 283 virtual Own<DatagramPort> bindDatagramPort();
cannam@62 284 // Open this address as a datagram (e.g. UDP) port.
cannam@62 285 //
cannam@62 286 // The address must be local.
cannam@62 287
cannam@62 288 virtual Own<NetworkAddress> clone() = 0;
cannam@62 289 // Returns an equivalent copy of this NetworkAddress.
cannam@62 290
cannam@62 291 virtual String toString() = 0;
cannam@62 292 // Produce a human-readable string which hopefully can be passed to Network::parseAddress()
cannam@62 293 // to reproduce this address, although whether or not that works of course depends on the Network
cannam@62 294 // implementation. This should be called only to display the address to human users, who will
cannam@62 295 // hopefully know what they are able to do with it.
cannam@62 296 };
cannam@62 297
cannam@62 298 class Network {
cannam@62 299 // Factory for NetworkAddress instances, representing the network services offered by the
cannam@62 300 // operating system.
cannam@62 301 //
cannam@62 302 // This interface typically represents broad authority, and well-designed code should limit its
cannam@62 303 // use to high-level startup code and user interaction. Low-level APIs should accept
cannam@62 304 // NetworkAddress instances directly and work from there, if at all possible.
cannam@62 305
cannam@62 306 public:
cannam@62 307 virtual Promise<Own<NetworkAddress>> parseAddress(StringPtr addr, uint portHint = 0) = 0;
cannam@62 308 // Construct a network address from a user-provided string. The format of the address
cannam@62 309 // strings is not specified at the API level, and application code should make no assumptions
cannam@62 310 // about them. These strings should always be provided by humans, and said humans will know
cannam@62 311 // what format to use in their particular context.
cannam@62 312 //
cannam@62 313 // `portHint`, if provided, specifies the "standard" IP port number for the application-level
cannam@62 314 // service in play. If the address turns out to be an IP address (v4 or v6), and it lacks a
cannam@62 315 // port number, this port will be used. If `addr` lacks a port number *and* `portHint` is
cannam@62 316 // omitted, then the returned address will only support listen() and bindDatagramPort()
cannam@62 317 // (not connect()), and an unused port will be chosen each time one of those methods is called.
cannam@62 318
cannam@62 319 virtual Own<NetworkAddress> getSockaddr(const void* sockaddr, uint len) = 0;
cannam@62 320 // Construct a network address from a legacy struct sockaddr.
cannam@62 321 };
cannam@62 322
cannam@62 323 // =======================================================================================
cannam@62 324 // I/O Provider
cannam@62 325
cannam@62 326 class AsyncIoProvider {
cannam@62 327 // Class which constructs asynchronous wrappers around the operating system's I/O facilities.
cannam@62 328 //
cannam@62 329 // Generally, the implementation of this interface must integrate closely with a particular
cannam@62 330 // `EventLoop` implementation. Typically, the EventLoop implementation itself will provide
cannam@62 331 // an AsyncIoProvider.
cannam@62 332
cannam@62 333 public:
cannam@62 334 virtual OneWayPipe newOneWayPipe() = 0;
cannam@62 335 // Creates an input/output stream pair representing the ends of a one-way pipe (e.g. created with
cannam@62 336 // the pipe(2) system call).
cannam@62 337
cannam@62 338 virtual TwoWayPipe newTwoWayPipe() = 0;
cannam@62 339 // Creates two AsyncIoStreams representing the two ends of a two-way pipe (e.g. created with
cannam@62 340 // socketpair(2) system call). Data written to one end can be read from the other.
cannam@62 341
cannam@62 342 virtual Network& getNetwork() = 0;
cannam@62 343 // Creates a new `Network` instance representing the networks exposed by the operating system.
cannam@62 344 //
cannam@62 345 // DO NOT CALL THIS except at the highest levels of your code, ideally in the main() function. If
cannam@62 346 // you call this from low-level code, then you are preventing higher-level code from injecting an
cannam@62 347 // alternative implementation. Instead, if your code needs to use network functionality, it
cannam@62 348 // should ask for a `Network` as a constructor or method parameter, so that higher-level code can
cannam@62 349 // chose what implementation to use. The system network is essentially a singleton. See:
cannam@62 350 // http://www.object-oriented-security.org/lets-argue/singletons
cannam@62 351 //
cannam@62 352 // Code that uses the system network should not make any assumptions about what kinds of
cannam@62 353 // addresses it will parse, as this could differ across platforms. String addresses should come
cannam@62 354 // strictly from the user, who will know how to write them correctly for their system.
cannam@62 355 //
cannam@62 356 // With that said, KJ currently supports the following string address formats:
cannam@62 357 // - IPv4: "1.2.3.4", "1.2.3.4:80"
cannam@62 358 // - IPv6: "1234:5678::abcd", "[1234:5678::abcd]:80"
cannam@62 359 // - Local IP wildcard (covers both v4 and v6): "*", "*:80"
cannam@62 360 // - Symbolic names: "example.com", "example.com:80", "example.com:http", "1.2.3.4:http"
cannam@62 361 // - Unix domain: "unix:/path/to/socket"
cannam@62 362
cannam@62 363 struct PipeThread {
cannam@62 364 // A combination of a thread and a two-way pipe that communicates with that thread.
cannam@62 365 //
cannam@62 366 // The fields are intentionally ordered so that the pipe will be destroyed (and therefore
cannam@62 367 // disconnected) before the thread is destroyed (and therefore joined). Thus if the thread
cannam@62 368 // arranges to exit when it detects disconnect, destruction should be clean.
cannam@62 369
cannam@62 370 Own<Thread> thread;
cannam@62 371 Own<AsyncIoStream> pipe;
cannam@62 372 };
cannam@62 373
cannam@62 374 virtual PipeThread newPipeThread(
cannam@62 375 Function<void(AsyncIoProvider&, AsyncIoStream&, WaitScope&)> startFunc) = 0;
cannam@62 376 // Create a new thread and set up a two-way pipe (socketpair) which can be used to communicate
cannam@62 377 // with it. One end of the pipe is passed to the thread's start function and the other end of
cannam@62 378 // the pipe is returned. The new thread also gets its own `AsyncIoProvider` instance and will
cannam@62 379 // already have an active `EventLoop` when `startFunc` is called.
cannam@62 380 //
cannam@62 381 // TODO(someday): I'm not entirely comfortable with this interface. It seems to be doing too
cannam@62 382 // much at once but I'm not sure how to cleanly break it down.
cannam@62 383
cannam@62 384 virtual Timer& getTimer() = 0;
cannam@62 385 // Returns a `Timer` based on real time. Time does not pass while event handlers are running --
cannam@62 386 // it only updates when the event loop polls for system events. This means that calling `now()`
cannam@62 387 // on this timer does not require a system call.
cannam@62 388 //
cannam@62 389 // This timer is not affected by changes to the system date. It is unspecified whether the timer
cannam@62 390 // continues to count while the system is suspended.
cannam@62 391 };
cannam@62 392
cannam@62 393 class LowLevelAsyncIoProvider {
cannam@62 394 // Similar to `AsyncIoProvider`, but represents a lower-level interface that may differ on
cannam@62 395 // different operating systems. You should prefer to use `AsyncIoProvider` over this interface
cannam@62 396 // whenever possible, as `AsyncIoProvider` is portable and friendlier to dependency-injection.
cannam@62 397 //
cannam@62 398 // On Unix, this interface can be used to import native file descriptors into the async framework.
cannam@62 399 // Different implementations of this interface might work on top of different event handling
cannam@62 400 // primitives, such as poll vs. epoll vs. kqueue vs. some higher-level event library.
cannam@62 401 //
cannam@62 402 // On Windows, this interface can be used to import native HANDLEs into the async framework.
cannam@62 403 // Different implementations of this interface might work on top of different event handling
cannam@62 404 // primitives, such as I/O completion ports vs. completion routines.
cannam@62 405 //
cannam@62 406 // TODO(port): Actually implement Windows support.
cannam@62 407
cannam@62 408 public:
cannam@62 409 // ---------------------------------------------------------------------------
cannam@62 410 // Unix-specific stuff
cannam@62 411
cannam@62 412 enum Flags {
cannam@62 413 // Flags controlling how to wrap a file descriptor.
cannam@62 414
cannam@62 415 TAKE_OWNERSHIP = 1 << 0,
cannam@62 416 // The returned object should own the file descriptor, automatically closing it when destroyed.
cannam@62 417 // The close-on-exec flag will be set on the descriptor if it is not already.
cannam@62 418 //
cannam@62 419 // If this flag is not used, then the file descriptor is not automatically closed and the
cannam@62 420 // close-on-exec flag is not modified.
cannam@62 421
cannam@62 422 #if !_WIN32
cannam@62 423 ALREADY_CLOEXEC = 1 << 1,
cannam@62 424 // Indicates that the close-on-exec flag is known already to be set, so need not be set again.
cannam@62 425 // Only relevant when combined with TAKE_OWNERSHIP.
cannam@62 426 //
cannam@62 427 // On Linux, all system calls which yield new file descriptors have flags or variants which
cannam@62 428 // set the close-on-exec flag immediately. Unfortunately, other OS's do not.
cannam@62 429
cannam@62 430 ALREADY_NONBLOCK = 1 << 2
cannam@62 431 // Indicates that the file descriptor is known already to be in non-blocking mode, so the flag
cannam@62 432 // need not be set again. Otherwise, all wrap*Fd() methods will enable non-blocking mode
cannam@62 433 // automatically.
cannam@62 434 //
cannam@62 435 // On Linux, all system calls which yield new file descriptors have flags or variants which
cannam@62 436 // enable non-blocking mode immediately. Unfortunately, other OS's do not.
cannam@62 437 #endif
cannam@62 438 };
cannam@62 439
cannam@62 440 #if _WIN32
cannam@62 441 typedef uintptr_t Fd;
cannam@62 442 // On Windows, the `fd` parameter to each of these methods must be a SOCKET, and must have the
cannam@62 443 // flag WSA_FLAG_OVERLAPPED (which socket() uses by default, but WSASocket() wants you to specify
cannam@62 444 // explicitly).
cannam@62 445 #else
cannam@62 446 typedef int Fd;
cannam@62 447 // On Unix, any arbitrary file descriptor is supported.
cannam@62 448 #endif
cannam@62 449
cannam@62 450 virtual Own<AsyncInputStream> wrapInputFd(Fd fd, uint flags = 0) = 0;
cannam@62 451 // Create an AsyncInputStream wrapping a file descriptor.
cannam@62 452 //
cannam@62 453 // `flags` is a bitwise-OR of the values of the `Flags` enum.
cannam@62 454
cannam@62 455 virtual Own<AsyncOutputStream> wrapOutputFd(Fd fd, uint flags = 0) = 0;
cannam@62 456 // Create an AsyncOutputStream wrapping a file descriptor.
cannam@62 457 //
cannam@62 458 // `flags` is a bitwise-OR of the values of the `Flags` enum.
cannam@62 459
cannam@62 460 virtual Own<AsyncIoStream> wrapSocketFd(Fd fd, uint flags = 0) = 0;
cannam@62 461 // Create an AsyncIoStream wrapping a socket file descriptor.
cannam@62 462 //
cannam@62 463 // `flags` is a bitwise-OR of the values of the `Flags` enum.
cannam@62 464
cannam@62 465 virtual Promise<Own<AsyncIoStream>> wrapConnectingSocketFd(
cannam@62 466 Fd fd, const struct sockaddr* addr, uint addrlen, uint flags = 0) = 0;
cannam@62 467 // Create an AsyncIoStream wrapping a socket and initiate a connection to the given address.
cannam@62 468 // The returned promise does not resolve until connection has completed.
cannam@62 469 //
cannam@62 470 // `flags` is a bitwise-OR of the values of the `Flags` enum.
cannam@62 471
cannam@62 472 virtual Own<ConnectionReceiver> wrapListenSocketFd(Fd fd, uint flags = 0) = 0;
cannam@62 473 // Create an AsyncIoStream wrapping a listen socket file descriptor. This socket should already
cannam@62 474 // have had `bind()` and `listen()` called on it, so it's ready for `accept()`.
cannam@62 475 //
cannam@62 476 // `flags` is a bitwise-OR of the values of the `Flags` enum.
cannam@62 477
cannam@62 478 virtual Own<DatagramPort> wrapDatagramSocketFd(Fd fd, uint flags = 0);
cannam@62 479
cannam@62 480 virtual Timer& getTimer() = 0;
cannam@62 481 // Returns a `Timer` based on real time. Time does not pass while event handlers are running --
cannam@62 482 // it only updates when the event loop polls for system events. This means that calling `now()`
cannam@62 483 // on this timer does not require a system call.
cannam@62 484 //
cannam@62 485 // This timer is not affected by changes to the system date. It is unspecified whether the timer
cannam@62 486 // continues to count while the system is suspended.
cannam@62 487 };
cannam@62 488
cannam@62 489 Own<AsyncIoProvider> newAsyncIoProvider(LowLevelAsyncIoProvider& lowLevel);
cannam@62 490 // Make a new AsyncIoProvider wrapping a `LowLevelAsyncIoProvider`.
cannam@62 491
cannam@62 492 struct AsyncIoContext {
cannam@62 493 Own<LowLevelAsyncIoProvider> lowLevelProvider;
cannam@62 494 Own<AsyncIoProvider> provider;
cannam@62 495 WaitScope& waitScope;
cannam@62 496
cannam@62 497 #if _WIN32
cannam@62 498 Win32EventPort& win32EventPort;
cannam@62 499 #else
cannam@62 500 UnixEventPort& unixEventPort;
cannam@62 501 // TEMPORARY: Direct access to underlying UnixEventPort, mainly for waiting on signals. This
cannam@62 502 // field will go away at some point when we have a chance to improve these interfaces.
cannam@62 503 #endif
cannam@62 504 };
cannam@62 505
cannam@62 506 AsyncIoContext setupAsyncIo();
cannam@62 507 // Convenience method which sets up the current thread with everything it needs to do async I/O.
cannam@62 508 // The returned objects contain an `EventLoop` which is wrapping an appropriate `EventPort` for
cannam@62 509 // doing I/O on the host system, so everything is ready for the thread to start making async calls
cannam@62 510 // and waiting on promises.
cannam@62 511 //
cannam@62 512 // You would typically call this in your main() loop or in the start function of a thread.
cannam@62 513 // Example:
cannam@62 514 //
cannam@62 515 // int main() {
cannam@62 516 // auto ioContext = kj::setupAsyncIo();
cannam@62 517 //
cannam@62 518 // // Now we can call an async function.
cannam@62 519 // Promise<String> textPromise = getHttp(*ioContext.provider, "http://example.com");
cannam@62 520 //
cannam@62 521 // // And we can wait for the promise to complete. Note that you can only use `wait()`
cannam@62 522 // // from the top level, not from inside a promise callback.
cannam@62 523 // String text = textPromise.wait(ioContext.waitScope);
cannam@62 524 // print(text);
cannam@62 525 // return 0;
cannam@62 526 // }
cannam@62 527 //
cannam@62 528 // WARNING: An AsyncIoContext can only be used in the thread and process that created it. In
cannam@62 529 // particular, note that after a fork(), an AsyncIoContext created in the parent process will
cannam@62 530 // not work correctly in the child, even if the parent ceases to use its copy. In particular
cannam@62 531 // note that this means that server processes which daemonize themselves at startup must wait
cannam@62 532 // until after daemonization to create an AsyncIoContext.
cannam@62 533
cannam@62 534 // =======================================================================================
cannam@62 535 // inline implementation details
cannam@62 536
cannam@62 537 inline AncillaryMessage::AncillaryMessage(
cannam@62 538 int level, int type, ArrayPtr<const byte> data)
cannam@62 539 : level(level), type(type), data(data) {}
cannam@62 540
cannam@62 541 inline int AncillaryMessage::getLevel() const { return level; }
cannam@62 542 inline int AncillaryMessage::getType() const { return type; }
cannam@62 543
cannam@62 544 template <typename T>
cannam@62 545 inline Maybe<const T&> AncillaryMessage::as() {
cannam@62 546 if (data.size() >= sizeof(T)) {
cannam@62 547 return *reinterpret_cast<const T*>(data.begin());
cannam@62 548 } else {
cannam@62 549 return nullptr;
cannam@62 550 }
cannam@62 551 }
cannam@62 552
cannam@62 553 template <typename T>
cannam@62 554 inline ArrayPtr<const T> AncillaryMessage::asArray() {
cannam@62 555 return arrayPtr(reinterpret_cast<const T*>(data.begin()), data.size() / sizeof(T));
cannam@62 556 }
cannam@62 557
cannam@62 558 } // namespace kj
cannam@62 559
cannam@62 560 #endif // KJ_ASYNC_IO_H_