cannam@127
|
1 (*
|
cannam@127
|
2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
5 *
|
cannam@127
|
6 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
7 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
8 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
9 * (at your option) any later version.
|
cannam@127
|
10 *
|
cannam@127
|
11 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
14 * GNU General Public License for more details.
|
cannam@127
|
15 *
|
cannam@127
|
16 * You should have received a copy of the GNU General Public License
|
cannam@127
|
17 * along with this program; if not, write to the Free Software
|
cannam@127
|
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
19 *
|
cannam@127
|
20 *)
|
cannam@127
|
21
|
cannam@127
|
22 (* The generator keeps track of numeric constants in symbolic
|
cannam@127
|
23 expressions using the abstract number type, defined in this file.
|
cannam@127
|
24
|
cannam@127
|
25 Our implementation of the number type uses arbitrary-precision
|
cannam@127
|
26 arithmetic from the built-in Num package in order to maintain an
|
cannam@127
|
27 accurate representation of constants. This allows us to output
|
cannam@127
|
28 constants with many decimal places in the generated C code,
|
cannam@127
|
29 ensuring that we will take advantage of the full precision
|
cannam@127
|
30 available on current and future machines.
|
cannam@127
|
31
|
cannam@127
|
32 Note that we have to write our own routine to compute roots of
|
cannam@127
|
33 unity, since the Num package only supplies simple arithmetic. The
|
cannam@127
|
34 arbitrary-precision operations in Num look like the normal
|
cannam@127
|
35 operations except that they have an appended slash (e.g. +/ -/ */
|
cannam@127
|
36 // etcetera). *)
|
cannam@127
|
37
|
cannam@127
|
38 open Num
|
cannam@127
|
39
|
cannam@127
|
40 type number = N of num
|
cannam@127
|
41
|
cannam@127
|
42 let makeNum n = N n
|
cannam@127
|
43
|
cannam@127
|
44 (* decimal digits of precision to maintain internally, and to print out: *)
|
cannam@127
|
45 let precision = 50
|
cannam@127
|
46 let print_precision = 45
|
cannam@127
|
47
|
cannam@127
|
48 let inveps = (Int 10) **/ (Int precision)
|
cannam@127
|
49 let epsilon = (Int 1) // inveps
|
cannam@127
|
50
|
cannam@127
|
51 let pinveps = (Int 10) **/ (Int print_precision)
|
cannam@127
|
52 let pepsilon = (Int 1) // pinveps
|
cannam@127
|
53
|
cannam@127
|
54 let round x = epsilon */ (round_num (x */ inveps))
|
cannam@127
|
55
|
cannam@127
|
56 let of_int n = N (Int n)
|
cannam@127
|
57 let zero = of_int 0
|
cannam@127
|
58 let one = of_int 1
|
cannam@127
|
59 let two = of_int 2
|
cannam@127
|
60 let mone = of_int (-1)
|
cannam@127
|
61
|
cannam@127
|
62 (* comparison predicate for real numbers *)
|
cannam@127
|
63 let equal (N x) (N y) = (* use both relative and absolute error *)
|
cannam@127
|
64 let absdiff = abs_num (x -/ y) in
|
cannam@127
|
65 absdiff <=/ pepsilon ||
|
cannam@127
|
66 absdiff <=/ pepsilon */ (abs_num x +/ abs_num y)
|
cannam@127
|
67
|
cannam@127
|
68 let is_zero = equal zero
|
cannam@127
|
69 let is_one = equal one
|
cannam@127
|
70 let is_mone = equal mone
|
cannam@127
|
71 let is_two = equal two
|
cannam@127
|
72
|
cannam@127
|
73
|
cannam@127
|
74 (* Note that, in the following computations, it is important to round
|
cannam@127
|
75 to precision epsilon after each operation. Otherwise, since the
|
cannam@127
|
76 Num package uses exact rational arithmetic, the number of digits
|
cannam@127
|
77 quickly blows up. *)
|
cannam@127
|
78 let mul (N a) (N b) = makeNum (round (a */ b))
|
cannam@127
|
79 let div (N a) (N b) = makeNum (round (a // b))
|
cannam@127
|
80 let add (N a) (N b) = makeNum (round (a +/ b))
|
cannam@127
|
81 let sub (N a) (N b) = makeNum (round (a -/ b))
|
cannam@127
|
82
|
cannam@127
|
83 let negative (N a) = (a </ (Int 0))
|
cannam@127
|
84 let negate (N a) = makeNum (minus_num a)
|
cannam@127
|
85
|
cannam@127
|
86 let greater a b = negative (sub b a)
|
cannam@127
|
87
|
cannam@127
|
88 let epsilonsq = epsilon */ epsilon
|
cannam@127
|
89 let epsilonsq2 = (Int 100) */ epsilonsq
|
cannam@127
|
90
|
cannam@127
|
91 let sqr a = a */ a
|
cannam@127
|
92 let almost_equal (N a) (N b) = (sqr (a -/ b)) <=/ epsilonsq2
|
cannam@127
|
93
|
cannam@127
|
94 (* find square root by Newton's method *)
|
cannam@127
|
95 let sqrt a =
|
cannam@127
|
96 let rec sqrt_iter guess =
|
cannam@127
|
97 let newguess = div (add guess (div a guess)) two in
|
cannam@127
|
98 if (almost_equal newguess guess) then newguess
|
cannam@127
|
99 else sqrt_iter newguess
|
cannam@127
|
100 in sqrt_iter (div a two)
|
cannam@127
|
101
|
cannam@127
|
102 let csub (xr, xi) (yr, yi) = (round (xr -/ yr), round (xi -/ yi))
|
cannam@127
|
103 let cdiv (xr, xi) r = (round (xr // r), round (xi // r))
|
cannam@127
|
104 let cmul (xr, xi) (yr, yi) = (round (xr */ yr -/ xi */ yi),
|
cannam@127
|
105 round (xr */ yi +/ xi */ yr))
|
cannam@127
|
106 let csqr (xr, xi) = (round (xr */ xr -/ xi */ xi), round ((Int 2) */ xr */ xi))
|
cannam@127
|
107 let cabssq (xr, xi) = xr */ xr +/ xi */ xi
|
cannam@127
|
108 let cconj (xr, xi) = (xr, minus_num xi)
|
cannam@127
|
109 let cinv x = cdiv (cconj x) (cabssq x)
|
cannam@127
|
110
|
cannam@127
|
111 let almost_equal_cnum (xr, xi) (yr, yi) =
|
cannam@127
|
112 (cabssq (xr -/ yr,xi -/ yi)) <=/ epsilonsq2
|
cannam@127
|
113
|
cannam@127
|
114 (* Put a complex number to an integer power by repeated squaring: *)
|
cannam@127
|
115 let rec ipow_cnum x n =
|
cannam@127
|
116 if (n == 0) then
|
cannam@127
|
117 (Int 1, Int 0)
|
cannam@127
|
118 else if (n < 0) then
|
cannam@127
|
119 cinv (ipow_cnum x (- n))
|
cannam@127
|
120 else if (n mod 2 == 0) then
|
cannam@127
|
121 ipow_cnum (csqr x) (n / 2)
|
cannam@127
|
122 else
|
cannam@127
|
123 cmul x (ipow_cnum x (n - 1))
|
cannam@127
|
124
|
cannam@127
|
125 let twopi = 6.28318530717958647692528676655900576839433879875021164194989
|
cannam@127
|
126
|
cannam@127
|
127 (* Find the nth (complex) primitive root of unity by Newton's method: *)
|
cannam@127
|
128 let primitive_root_of_unity n =
|
cannam@127
|
129 let rec root_iter guess =
|
cannam@127
|
130 let newguess = csub guess (cdiv (csub guess
|
cannam@127
|
131 (ipow_cnum guess (1 - n)))
|
cannam@127
|
132 (Int n)) in
|
cannam@127
|
133 if (almost_equal_cnum guess newguess) then newguess
|
cannam@127
|
134 else root_iter newguess
|
cannam@127
|
135 in let float_to_num f = (Int (truncate (f *. 1.0e9))) // (Int 1000000000)
|
cannam@127
|
136 in root_iter (float_to_num (cos (twopi /. (float n))),
|
cannam@127
|
137 float_to_num (sin (twopi /. (float n))))
|
cannam@127
|
138
|
cannam@127
|
139 let cexp n i =
|
cannam@127
|
140 if ((i mod n) == 0) then
|
cannam@127
|
141 (one,zero)
|
cannam@127
|
142 else
|
cannam@127
|
143 let (n2,i2) = Util.lowest_terms n i
|
cannam@127
|
144 in let (c,s) = ipow_cnum (primitive_root_of_unity n2) i2
|
cannam@127
|
145 in (makeNum c, makeNum s)
|
cannam@127
|
146
|
cannam@127
|
147 let to_konst (N n) =
|
cannam@127
|
148 let f = float_of_num n in
|
cannam@127
|
149 let f' = if f < 0.0 then f *. (-1.0) else f in
|
cannam@127
|
150 let f2 = if (f' >= 1.0) then (f' -. (float (truncate f'))) else f'
|
cannam@127
|
151 in let q = string_of_int (truncate(f2 *. 1.0E9))
|
cannam@127
|
152 in let r = "0000000000" ^ q
|
cannam@127
|
153 in let l = String.length r
|
cannam@127
|
154 in let prefix = if (f < 0.0) then "KN" else "KP" in
|
cannam@127
|
155 if (f' >= 1.0) then
|
cannam@127
|
156 (prefix ^ (string_of_int (truncate f')) ^ "_" ^
|
cannam@127
|
157 (String.sub r (l - 9) 9))
|
cannam@127
|
158 else
|
cannam@127
|
159 (prefix ^ (String.sub r (l - 9) 9))
|
cannam@127
|
160
|
cannam@127
|
161 let to_string (N n) = approx_num_fix print_precision n
|
cannam@127
|
162
|
cannam@127
|
163 let to_float (N n) = float_of_num n
|
cannam@127
|
164
|