annotate src/fftw-3.3.3/rdft/problem.c @ 46:efe5b9f38b13

Debug build of Rubber Band Library
author Chris Cannam
date Wed, 19 Oct 2016 17:32:56 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21
Chris@10 22 #include "rdft.h"
Chris@10 23 #include <stddef.h>
Chris@10 24
Chris@10 25 static void destroy(problem *ego_)
Chris@10 26 {
Chris@10 27 problem_rdft *ego = (problem_rdft *) ego_;
Chris@10 28 #if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR)
Chris@10 29 X(ifree0)(ego->kind);
Chris@10 30 #endif
Chris@10 31 X(tensor_destroy2)(ego->vecsz, ego->sz);
Chris@10 32 X(ifree)(ego_);
Chris@10 33 }
Chris@10 34
Chris@10 35 static void kind_hash(md5 *m, const rdft_kind *kind, int rnk)
Chris@10 36 {
Chris@10 37 int i;
Chris@10 38 for (i = 0; i < rnk; ++i)
Chris@10 39 X(md5int)(m, kind[i]);
Chris@10 40 }
Chris@10 41
Chris@10 42 static void hash(const problem *p_, md5 *m)
Chris@10 43 {
Chris@10 44 const problem_rdft *p = (const problem_rdft *) p_;
Chris@10 45 X(md5puts)(m, "rdft");
Chris@10 46 X(md5int)(m, p->I == p->O);
Chris@10 47 kind_hash(m, p->kind, p->sz->rnk);
Chris@10 48 X(md5int)(m, X(alignment_of)(p->I));
Chris@10 49 X(md5int)(m, X(alignment_of)(p->O));
Chris@10 50 X(tensor_md5)(m, p->sz);
Chris@10 51 X(tensor_md5)(m, p->vecsz);
Chris@10 52 }
Chris@10 53
Chris@10 54 static void recur(const iodim *dims, int rnk, R *I)
Chris@10 55 {
Chris@10 56 if (rnk == RNK_MINFTY)
Chris@10 57 return;
Chris@10 58 else if (rnk == 0)
Chris@10 59 I[0] = K(0.0);
Chris@10 60 else if (rnk > 0) {
Chris@10 61 INT i, n = dims[0].n, is = dims[0].is;
Chris@10 62
Chris@10 63 if (rnk == 1) {
Chris@10 64 /* this case is redundant but faster */
Chris@10 65 for (i = 0; i < n; ++i)
Chris@10 66 I[i * is] = K(0.0);
Chris@10 67 } else {
Chris@10 68 for (i = 0; i < n; ++i)
Chris@10 69 recur(dims + 1, rnk - 1, I + i * is);
Chris@10 70 }
Chris@10 71 }
Chris@10 72 }
Chris@10 73
Chris@10 74 void X(rdft_zerotens)(tensor *sz, R *I)
Chris@10 75 {
Chris@10 76 recur(sz->dims, sz->rnk, I);
Chris@10 77 }
Chris@10 78
Chris@10 79 #define KSTR_LEN 8
Chris@10 80
Chris@10 81 const char *X(rdft_kind_str)(rdft_kind kind)
Chris@10 82 {
Chris@10 83 static const char kstr[][KSTR_LEN] = {
Chris@10 84 "r2hc", "r2hc01", "r2hc10", "r2hc11",
Chris@10 85 "hc2r", "hc2r01", "hc2r10", "hc2r11",
Chris@10 86 "dht",
Chris@10 87 "redft00", "redft01", "redft10", "redft11",
Chris@10 88 "rodft00", "rodft01", "rodft10", "rodft11"
Chris@10 89 };
Chris@10 90 A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN);
Chris@10 91 return kstr[kind];
Chris@10 92 }
Chris@10 93
Chris@10 94 static void print(const problem *ego_, printer *p)
Chris@10 95 {
Chris@10 96 const problem_rdft *ego = (const problem_rdft *) ego_;
Chris@10 97 int i;
Chris@10 98 p->print(p, "(rdft %d %D %T %T",
Chris@10 99 X(alignment_of)(ego->I),
Chris@10 100 (INT)(ego->O - ego->I),
Chris@10 101 ego->sz,
Chris@10 102 ego->vecsz);
Chris@10 103 for (i = 0; i < ego->sz->rnk; ++i)
Chris@10 104 p->print(p, " %d", (int)ego->kind[i]);
Chris@10 105 p->print(p, ")");
Chris@10 106 }
Chris@10 107
Chris@10 108 static void zero(const problem *ego_)
Chris@10 109 {
Chris@10 110 const problem_rdft *ego = (const problem_rdft *) ego_;
Chris@10 111 tensor *sz = X(tensor_append)(ego->vecsz, ego->sz);
Chris@10 112 X(rdft_zerotens)(sz, UNTAINT(ego->I));
Chris@10 113 X(tensor_destroy)(sz);
Chris@10 114 }
Chris@10 115
Chris@10 116 static const problem_adt padt =
Chris@10 117 {
Chris@10 118 PROBLEM_RDFT,
Chris@10 119 hash,
Chris@10 120 zero,
Chris@10 121 print,
Chris@10 122 destroy
Chris@10 123 };
Chris@10 124
Chris@10 125 /* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be
Chris@10 126 eliminated. REDFT/RODFT unit dimensions often have factors of 2.0
Chris@10 127 and suchlike from normalization and phases, although in principle
Chris@10 128 these constant factors from different dimensions could be combined. */
Chris@10 129 static int nontrivial(const iodim *d, rdft_kind kind)
Chris@10 130 {
Chris@10 131 return (d->n > 1 || kind == R2HC11 || kind == HC2R11
Chris@10 132 || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01));
Chris@10 133 }
Chris@10 134
Chris@10 135 problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
Chris@10 136 R *I, R *O, const rdft_kind *kind)
Chris@10 137 {
Chris@10 138 problem_rdft *ego;
Chris@10 139 int rnk = sz->rnk;
Chris@10 140 int i;
Chris@10 141
Chris@10 142 A(X(tensor_kosherp)(sz));
Chris@10 143 A(X(tensor_kosherp)(vecsz));
Chris@10 144 A(FINITE_RNK(sz->rnk));
Chris@10 145
Chris@10 146 if (UNTAINT(I) == UNTAINT(O))
Chris@10 147 I = O = JOIN_TAINT(I, O);
Chris@10 148
Chris@10 149 if (I == O && !X(tensor_inplace_locations)(sz, vecsz))
Chris@10 150 return X(mkproblem_unsolvable)();
Chris@10 151
Chris@10 152 for (i = rnk = 0; i < sz->rnk; ++i) {
Chris@10 153 A(sz->dims[i].n > 0);
Chris@10 154 if (nontrivial(sz->dims + i, kind[i]))
Chris@10 155 ++rnk;
Chris@10 156 }
Chris@10 157
Chris@10 158 #if defined(STRUCT_HACK_KR)
Chris@10 159 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
Chris@10 160 + sizeof(rdft_kind)
Chris@10 161 * (rnk > 0 ? rnk - 1 : 0), &padt);
Chris@10 162 #elif defined(STRUCT_HACK_C99)
Chris@10 163 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
Chris@10 164 + sizeof(rdft_kind) * rnk, &padt);
Chris@10 165 #else
Chris@10 166 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt);
Chris@10 167 ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * rnk, PROBLEMS);
Chris@10 168 #endif
Chris@10 169
Chris@10 170 /* do compression and sorting as in X(tensor_compress), but take
Chris@10 171 transform kind into account (sigh) */
Chris@10 172 ego->sz = X(mktensor)(rnk);
Chris@10 173 for (i = rnk = 0; i < sz->rnk; ++i) {
Chris@10 174 if (nontrivial(sz->dims + i, kind[i])) {
Chris@10 175 ego->kind[rnk] = kind[i];
Chris@10 176 ego->sz->dims[rnk++] = sz->dims[i];
Chris@10 177 }
Chris@10 178 }
Chris@10 179 for (i = 0; i + 1 < rnk; ++i) {
Chris@10 180 int j;
Chris@10 181 for (j = i + 1; j < rnk; ++j)
Chris@10 182 if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) {
Chris@10 183 iodim dswap;
Chris@10 184 rdft_kind kswap;
Chris@10 185 dswap = ego->sz->dims[i];
Chris@10 186 ego->sz->dims[i] = ego->sz->dims[j];
Chris@10 187 ego->sz->dims[j] = dswap;
Chris@10 188 kswap = ego->kind[i];
Chris@10 189 ego->kind[i] = ego->kind[j];
Chris@10 190 ego->kind[j] = kswap;
Chris@10 191 }
Chris@10 192 }
Chris@10 193
Chris@10 194 for (i = 0; i < rnk; ++i)
Chris@10 195 if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00
Chris@10 196 || ego->kind[i] == DHT
Chris@10 197 || ego->kind[i] == HC2R))
Chris@10 198 ego->kind[i] = R2HC; /* size-2 transforms are equivalent */
Chris@10 199
Chris@10 200 ego->vecsz = X(tensor_compress_contiguous)(vecsz);
Chris@10 201 ego->I = I;
Chris@10 202 ego->O = O;
Chris@10 203
Chris@10 204 A(FINITE_RNK(ego->sz->rnk));
Chris@10 205
Chris@10 206 return &(ego->super);
Chris@10 207 }
Chris@10 208
Chris@10 209 /* Same as X(mkproblem_rdft), but also destroy input tensors. */
Chris@10 210 problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
Chris@10 211 R *I, R *O, const rdft_kind *kind)
Chris@10 212 {
Chris@10 213 problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind);
Chris@10 214 X(tensor_destroy2)(vecsz, sz);
Chris@10 215 return p;
Chris@10 216 }
Chris@10 217
Chris@10 218 /* As above, but for rnk <= 1 only and takes a scalar kind parameter */
Chris@10 219 problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
Chris@10 220 R *I, R *O, rdft_kind kind)
Chris@10 221 {
Chris@10 222 A(sz->rnk <= 1);
Chris@10 223 return X(mkproblem_rdft)(sz, vecsz, I, O, &kind);
Chris@10 224 }
Chris@10 225
Chris@10 226 problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
Chris@10 227 R *I, R *O, rdft_kind kind)
Chris@10 228 {
Chris@10 229 A(sz->rnk <= 1);
Chris@10 230 return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind);
Chris@10 231 }
Chris@10 232
Chris@10 233 /* create a zero-dimensional problem */
Chris@10 234 problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O)
Chris@10 235 {
Chris@10 236 return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O,
Chris@10 237 (const rdft_kind *)0);
Chris@10 238 }